By: Bruce Weinberg, The Ohio State University

Science funding is intended to support the production of new knowledge and ideas that develop new technologies, improve medical treatments and strengthen the economy. The idea goes back to influential engineer Vannevar Bush, who headed the U.S. Office of Scientific Research and Development during World War II. And the evidence is that science funding does have these effects. The Conversation

But, at a practical level, science funding from all sources supports research projects, the people who work on them and the businesses that provide the equipment, materials and services used to carry them out. Given current proposed cuts to federal science funding – the Trump administration has, for instance, proposed a 20 percent reduction for the National Institutes of Health – it’s important to know what types of people and businesses are touched by sponsored research projects. This information provides a window into the likely effects of funding cuts.

Most existing research into the effects of science funding tries to quantify research artifacts, such as publications and patents, rather than tracking people. I’ve helped to start an emerging project called the UMETRICS initiative which takes a novel approach to thinking about innovation and science. At its core, UMETRICS views people as key to understanding science and innovation – people conduct research, people are the vectors by which ideas move around and, ultimately, people are one of the primary “products” of the research enterprise.

UMETRICS identifies people employed on scientific projects at universities and the purchases made to carry out those projects. It then tracks people to the businesses and universities that hire them, and purchases to the vendors from which they come. Since UMETRICS relies entirely on administrative data provided by member universities (now around 50), the U.S. Census Bureau and other naturally occurring data, there are no reporting errors, sample coverage concerns or burden for people. It covers essentially all federal research funding as well as some funding from private foundations.


From Bacteria to Electrical Generator

BacteriaThe estimated total number of bacteria of the planet is estimated at five nonillion, and the world of bacteria is stocked with potential, including electrical production.

Researchers from the University of California are looking to tap into some of that potential by looking at “electrogenic” bacteria, which generate current as part of their metabolism. The research team has found a new way to mimic that ability upon non-electrogenic bacteria, opening up opportunities for new developments in sustainable electricity generation and wastewater treatment.

“The concept here is that if we just close the lid of the wastewater treatment tank and then give the bacteria an electrode, they can produce electricity while cleaning the water,” says Zach Rengert, co-first author of the study. “And the amount of electricity they produce will never power anything very big, but it can offset the cost of cleaning water.”


Nuclear energyA joint research effort from Rice University and Kazan Federal University is demonstrating a new way to pull radioactive elements out of contaminated water. The researchers behind this study believe their results could go a long way in purifying the hundreds of millions of gallons of water that were contaminated after the Fukushima nuclear plant accident.

(MORE: Listen to the ECS Podcast with Way Kuo, nuclear energy expert and Fukushima consultant.)

This from Rice University:

They reported that their oxidatively modified carbon (OMC) material is inexpensive and highly efficient at absorbing radioactive metal cations, including cesium and strontium, toxic elements released into the environment when the Fukushima plant melted down after an earthquake and tsunami in March 2011.


By: Rose Hendricks, University of California, San Diego

We humans have collectively accumulated a lot of science knowledge. We’ve developed vaccines that can eradicate some of the most devastating diseases. We’ve engineered bridges and cities and the internet. We’ve created massive metal vehicles that rise tens of thousands of feet and then safely set down on the other side of the globe. And this is just the tip of the iceberg (which, by the way, we’ve discovered is melting). While this shared knowledge is impressive, it’s not distributed evenly. Not even close. There are too many important issues that science has reached a consensus on that the public has not.

Scientists and the media need to communicate more science and communicate it better. Good communication ensures that scientific progress benefits society, bolsters democracy, weakens the potency of fake news and misinformation and fulfills researchers’ responsibility to engage with the public. Such beliefs have motivated training programs, workshops and a research agenda from the National Academies of Science, Engineering, and Medicine on learning more about science communication. A resounding question remains for science communicators: What can we do better?

A common intuition is that the main goal of science communication is to present facts; once people encounter those facts, they will think and behave accordingly. The National Academies’ recent report refers to this as the “deficit model.”

But in reality, just knowing facts doesn’t necessarily guarantee that one’s opinions and behaviors will be consistent with them. For example, many people “know” that recycling is beneficial but still throw plastic bottles in the trash. Or they read an online article by a scientist about the necessity of vaccines, but leave comments expressing outrage that doctors are trying to further a pro-vaccine agenda. Convincing people that scientific evidence has merit and should guide behavior may be the greatest science communication challenge, particularly in our “post-truth” era.


Achieving a More Efficient Catalyst

Nanoporous goldA new study out of Lawrence Livermore National Laboratory shows that catalysts derived from nano-structured materials are as good as gold.

According to the study, led by past ECS member Juergen Biener, restructuring nanoporous gold alloys result in more efficient catalysts.

Nano-structured materials have shown promising qualities for improving catalyst activity and selectivity, but little is known about the structural changes that the materials undergo that can create or prevent efficient catalyst function.

This from LLNL:

The team used ozone-activated silver-gold alloys in the form of nanoporous gold (npAu) as a case study to demonstrate the dynamic behavior of bi-metallic systems during activation to produce a functioning catalyst. Nanoporous gold, a porous metal, can be used in electrochemical sensors, catalytic platforms, fundamental structure property studies at the nanoscale and tunable drug release. It also features high effective surface area, tunable pore size, well-defined conjugate chemistry, high electrical conductivity and compatibility with traditional fabrication techniques.


Waste waterA new study led by ECS member Haluk Beyenal reveals a novel type of cooperative photosynthesis with potential applications in waste treatment and bioenergy production.

The research details a unique metabolic process observed for the first time in a pair of bacteria, which could be used to engineer microbial communities. Beyenal and his team honed in on a bacterium known as Prosthecochloris aestaurii, which is able to photosynthesize by using sunlight and elemental sulfur or hydrogen sulfide.

This from Washington State University:

The researchers noticed that P. aestuarii tended to gather around a carbon electrode, an electricity conductor that they were operating in Hot Lake. The researchers isolated and grew P. aestuarii and determined that, similar to the way half of a battery works, the bacterium is able to grab electrons from a solid electrode and use them for photosynthesis. The pink-colored Geobacter sulfurreducens meanwhile, is known for its ability to convert waste organic matter to electricity in microbial fuel cells. The bacterium is also used in environmental cleanup.


Static Electricity’s Tiny Sparks

By: Sebastian Deffner, University of Maryland, Baltimore County

Static electricityStatic electricity is a ubiquitous part of everyday life. It’s all around us, sometimes funny and obvious, as when it makes your hair stand on end, sometimes hidden and useful, as when harnessed by the electronics in your cellphone. The dry winter months are high season for an annoying downside of static electricity – electric discharges like tiny lightning zaps whenever you touch door knobs or warm blankets fresh from the clothes dryer.

Static electricity is one of the oldest scientific phenomena people observed and described. Greek philosopher Thales of Miletus made the first account; in his sixth century B.C. writings, he noted that if amber was rubbed hard enough, small dust particles will start sticking to it. Three hundred years later, Theophrastus followed up on Thales’ experiments by rubbing various kinds of stone and also observed the “power of attraction.” But neither of these natural philosophers found a satisfactory explanation for what they saw.

It took almost 2,000 more years before the English word “electricity” was first coined, based on the Latin “electricus,” meaning “like amber.” Some of the most famous experiments were conducted by Benjamin Franklin in his quest to understand the underlying mechanism of electricity – which is one of the reasons why his face smiles from the US$100 bill. People quickly recognized electricity’s potential usefulness.

Of course, in the 18th century people mostly made use of static electricity in magic tricks and other performances. For instance, Stephen Gray‘s “flying boy experiment” became a popular public demonstration: He’d use a Leyden jar to charge up the youth, suspended from silk cords, and then show how he could turn book pages via static electricity, or lift small objects just using the static attraction.


Corroded pipelinesCorrosion is a dangerous and extremely costly problem. Because of it, buildings and bridges can collapse, oil pipelines break, and water sources become contaminated. Currently, the global cost estimated to repair corrosive effects comes in around $2.5 trillion per year.

But researchers in the field of corrosion science and technology like Robert Kelly, the 2016 winner of ECS’s Corrosion Division H. H. Uhlig Award, are looking to change the way we deal with the effects of corrosion from reactive to predictive.

“One of the sayings about corrosion is that we can explain everything and predict nothing,” Kelly says. “We’re looking to turn that around.”

Corrosion time machine

Kelly, AT&T Professor of Engineering in the University of Virginia’s Department of Materials Science and Engineering, is working with his team to better understand what’s controlling the localized corrosion process with a newly designed accelerated test that can predict the corrosive effects on certain materials when they’re put into their natural environment.


By: Andrew Maynard, Arizona State University and Dietram A. Scheufele, University of Wisconsin-Madison

Scientific communicationTruth seems to be an increasingly flexible concept in politics. At least that’s the impression the Oxford English Dictionary gave recently, as it declared “post-truth” the 2016 Word of the Year. What happens when decisions are based on misleading or blatantly wrong information? The answer is quite simple – our airplanes would be less safe, our medical treatments less effective, our economy less competitive globally, and on and on.

Many scientists and science communicators have grappled with disregard for, or inappropriate use of, scientific evidence for years – especially around contentious issues like the causes of global warming, or the benefits of vaccinating children. A long debunked study on links between vaccinations and autism, for instance, cost the researcher his medical license but continues to keep vaccination rates lower than they should be.

Only recently, however, have people begun to think systematically about what actually works to promote better public discourse and decision-making around what is sometimes controversial science. Of course scientists would like to rely on evidence, generated by research, to gain insights into how to most effectively convey to others what they know and do.

As it turns out, the science on how to best communicate science across different issues, social settings and audiences has not led to easy-to-follow, concrete recommendations.


What is Blue Energy?

Blue energyWater and energy are inextricably linked. The two have shared a long technological and symbolic connection, which has led to what researchers in the field call the energy/water nexus.

The energy/water nexus refers to the relationship between the water used for energy production and the energy consumed to extract, purify, and deliver water. During the PRiME 2016 meeting in October, researchers from across the globe gathered together for the Energy/Water Nexus: Power from Saline Solutions symposium to discuss emerging technologies and how the interplay between water and energy could affect society now and in the future.

“It’s very hard to say energy and not say water in the same sentence. They are completely interconnected systems,” says Andrew Herring, co-organizer of the symposium and Colorado School of Mines professor. “You cannot have clean water without energy, and to have clean water, you have to have energy.”

Some of the most common research topics in the water/energy nexus are water purification, desalination, and cooling efforts to create energy sources. However, there is another subcategory of this field that is overlooked but could play a vital role in the development of future technologies: blue energy.

Potential of blue energy

The concept of blue energy – otherwise known as osmotic power – was developed upon the realization that through electrochemistry, researchers can create a concentration cell with salt water on one side and fresh water on the other, which results in a novel way to power devices.


  • Page 2 of 10