Chemical Reactions Through Brute Force

"Katsenite" named after McGill researcher who analyzed short-lived material’s chemical structure.Source: McGill University

“Katsenite” named after McGill researcher who analyzed short-lived material’s chemical structure.
Source: McGill University

Have you heard of mechanochemistry yet? Researchers from McGill University are making a name for themselves in this up-and-coming multidisciplinary field with their discovery of a new material unveiled through unconventional means.

Prof. Tomislav Friščić’s research group in McGill’s Department of Chemistry is now producing chemical reactions through milling, grinding, or shering solid state ingredients. In other words, the team is using brute force to elicit these reactions rather than the typical liquid agents.

The group states that their process is similar to that of a coffee grinder. The advantage to using force over liquids is that it avoids environmentally harmful bulk solvents that are typically used when producing chemical reactions.

These findings were published in the paper “In Situ X-ray diffraction monitoring of a mechanochemical reaction reveals a unique topology metal-organic framework”. It all began in late 2012, where researchers reported that they had been able to observe milling reaction in real time – seeing chemical transformations using highly penetrating X-rays.

(more…)

Polymers to Stop Deadly Blood Loss

Blood clots treated with PolySTAT (second from right) had denser fibrin networks, which helps reinforce and strengthen the clots.Image: University of Washington

Blood clots treated with PolySTAT (second from right) had denser fibrin networks, which helps reinforce and strengthen the clots.
Image: University of Washington

University of Washington researchers have developed a new injectable polymer that could keep soldiers and trauma patients from bleeding to death, called the PolySTAT.

The new polymer works to strengthen blood clots once administered into the patient’s bloodstream in a simple shot. The polymer then finds unseen internal injuries and starts working to stop the bleeding.

Researchers believe this could become the first line of defense for anything from battlefield injuries to car accidents. With testing already underway, the polymer has the potential to reach humans in as few as five years.

(more…)

  • Page 8 of 8