Record-Breaking Energy Efficiency Levels

An interdisciplinary team has set a new record for direct solar water splitting efficiency. Surpassing the 17 year old record of 12.4 percent, the new achieved efficiency level of 14 percent guarantees a promising future for solar hydrogen production.

While the potential for renewable energy is available across the globe, the ability to harvest and store this energy is not. One solution to achieving global renewable energy is through artificial photosynthesis.

How to Power the Future

Much like organic photosynthesis, artificial photosynthesis coverts sunlight into chemical energy. This highly-researched concept also has the ability to be carried into semiconductor technology.

Essentially, researchers can take the sun’s electrical power and split water into oxygen and hydrogen with high energy density levels. This type of development has the potential to replace current fossil fuels and create a type of energy that does not emit harmful carbon dioxide.

The concept has not been utilized on a commercial level due to the high cost. However, this new development could raise the efficiency levels to a high enough percentage to make the process economically viable.

This from the Helmholtz Association of German Research Centres:

Lead author Matthias May … processed and surveyed about one hundred samples in his excellent doctoral dissertation to achieve this. The fundamental components are tandem solar cells of what are known as III-V semiconductors. Using a now patented photo-electrochemical process, May could modify certain surfaces of these semiconductor systems in such a way that they functioned better in water splitting.

(more…)

Solar Cells Take Inspiration from Art

One of the more common issues with solar cell efficiency is their inability to move with the sun as it crosses the sky. While large scale solar panels can be fitted with bulky motorized trackers, those with rooftop solar panels do not have that luxury. In an effort to solve this issues, researchers are drawing some inspiration from art in their mission toward higher solar efficiency.

Scientists are applying some of the shapes and designs from the ancient art of kirigami—the Japanese art of paper cutting—to develop a solar cell that can capture up to 36 percent more energy due to the design’s ability to grab more sun.

“The design takes what a large tracking solar panel does and condenses it into something that is essentially flat,” said Aaron Lamoureux, a doctoral student in materials science and engineering and first author on the paper.

In the United States alone, there are currently over 20,000 MW of operational solar capacity. Nearly 640,000 U.S. homes have opted to rely on solar power. However, if the home panels were able to follow the sun’s movement on a daily basis, we could see a dramatic increase in efficiency and usage.

(more…)

Could These ‘Plants’ Fuel the Future?

Scientists working in the field of synthetic photosynthesis have recently developed an artificial “leaf” the can produce natural gas from carbon dioxide. This marks a major step toward producing renewable fuels.

Through a combination of semiconducting nanowires and bacteria, the researchers were able to design an artificial plant that can make natural gases using only sunlight—making the likelihood of a cleaner future more tangible.

From Organic to Synthetic

The roots of this development stem for the natural process of photosynthesis. Instead of the natural byproduct of organic photosynthesis (sugar), these scientists have produced methane.

“We’re good at generating electrons from light efficiently, but chemical synthesis always limited our systems in the past,” said Peidong Yang, head researcher in the study. “One purpose of this experiment was to show we could integrate bacterial catalysts with semiconductor technology. This lets us understand and optimize a truly synthetic photosynthesis system.”

(more…)

Key Development in Hydrogen Fuel Cell Vehicles

Hydrogen fuel cell vehicles have the potential to revolutionize the transportation system. From aiding the fight against climate change through clean emissions to reducing dependency on fossil fuels, hydrogen could potential help power the future and change mobility. Automakers believe that by 2020, there will be tens of thousands of hydrogen fuel cell vehicles on the road. In order to do this, we’re looking towards scientists to make innovation developments leading toward cheaper and more efficient technologies.

Creating a Hydrogen Fuel Cell Vehicle

Shawn Litster, ECS member and associate professor at Carnegie Mellon University, is doing just that. Lister, along with ECS student member William Epting, is focusing his attention on energy technologies that utilize electrochemical devices to further research in the development of the near-perfect fuel cell vehicle.

(Check out a past meeting abstract by the two on fuel cell electrode analysis.)

“We’re looking for ways to minimize the impact of transportation on society and the environment,” said Litster.


Litster and his team have discovered that one of the reasons for the high cost of development for hydrogen fuel cell vehicles is the nanoscale polymer films. While these films offer a host of positive qualities, they require expensive platinum to operate properly.

(more…)

The Key to Fast-Charging Li-Ion Batteries

Batteries are a critical part of our everyday lives. From phones to laptops to cars to grid energy storage—batteries are essential to many devices. Lithium ion batteries have taken the lead in battery technology, with lithium iron phosphate batteries (LFP) performing particularly well. While it was known that LFP batteries could charge quickly and withstand many factors, the reasons for this were unknown until know.


A team of researchers from the Paul Scherrer Institute and Toyota Central R&D Labs has discovered why LFP batteries can be recharged so rapidly. The team is comprised of ECS member Tsuyoshi Sasaki, past members Michael Hess and Petr Novak, and Journal of The Electrochemical Society (JES) published author Claire Villevieille.

(PS: Check out their past paper, “Surface/Interface Study on Full xLi2MnO3·(1 − x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells.”)

This from Paul Scherrer Institute:

The reason: the step-like concentration gradient gives way to a gentle, ramp-like progression of the lithium concentration. This is because, at higher voltages, the lithium ions involved in the charging process are distributed across the volume of the electrode particles for brief moments as opposed to being herded together in a thin layer boundary. As a result, the lithium can be set in motion more easily during charging, without the need for more energy to be added to negotiate the layer boundary.

(more…)

High Solar Efficiency Through Water-Splitting

Rice University researchers (clockwise from left) Chloe Doiron, Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann.

Rice University researchers (clockwise from left) Chloe Doiron, Hossein Robatjazi, Shah Mohammad Bahauddin and Isabell Thomann.

A team from Rice University, led by assistant professor and ECS member Isabell Thomann, has demonstrate a highly efficient way to harness energy from the sun though the splitting of water molecules.

Through the configuration of light-activated gold nanoparticles, the team was able to successfully harvest and transfer energy to what the scientists refer to as “hot electrons.”

“Hot electrons have the potential to drive very useful chemical reactions, but they decay very rapidly, and people have struggled to harness their energy,” said Thomann. “For example, most of the energy losses in today’s best photovoltaic solar panels are the result of hot electrons that cool within a few trillionths of a second and release their energy as wasted heat.”

If the hot electrons could be capture before they have the opportunity to cool, society could be seeing a significant increase to energy conversion efficiencies.

(more…)

Coffee Grounds to Store Greenhouse Gases

Do your old, damp coffee grounds have the potential to save the world? New research from the journal Nanotechnology states that the same coffee grounds you toss in the trash every day actually have the ability to store methane.

ECS Fellow Meyya Meyyappan and a team of researchers found that by combining the used coffee grounds with potassium hydroxide, a material with the ability to store substantial amounts of methane was created.

Coffee Grounds Fight Climate Change

In light of global warming and the damaging effects rising temperatures and increased greenhouse gas emissions have on the planet, the ability to store harmful methane is critical.

Methane is a preventable greenhouse gas that accounts for about 10 percent of all harmful emissions derived from human activity. While methane doesn’t stay in the atmosphere as long as the more commonly talked about carbon dioxide, it is far more devastating to the climate due to its extreme efficiency in absorbing heat. In fact, methane is about 84 times more potent than carbon dioxide.

(more…)

nanomaterialMore and more people are looking toward nanomaterials to help solve issues in the energy infrastructure. Not only could this technology lead to more efficient and cost effective renewable energy sources, but could also help the development of devices that remove pollutants from the air and water. In fact, nanotechnology has such a vast scope that there is potential for it to impact almost all areas of society.

“There is not a field that is not touched,” said nanomaterials expert Francis D’Souza of the University of North Texas. “It is a group of very eminent scientists exploring the possibilities in every single field. You can expect big discoveries and breakthroughs.”

While nanomaterials are infiltrating everything from electronics to biomedical applications, many scientists have shift their primary focus to energy harvesting.

“There are so many new capabilities that can be exploited with nanotechnology, from dramatic improvements to solar conversion efficiency to battery systems with higher storage capacity and faster charging and discharging cycles to miniaturized power management systems, so we can have energy storage that can last for a long time,” said IBM’s Lili Deligianni.

(more…)

In an effort to address climate change, President Obama is setting the United States on the path towards a clean energy economy.

Recently, President Obama announced the country’s plan to drive alternative energy innovation and accelerate the transition to clean energy. Growing on the already established ENERGY STAR program, the executive actions focus on implementing clean, efficient, and affordable energy technologies across multiple sectors of the United States.

Highlights

  • More funding for energy projects utilizing innovative technology, including an additional $1 billion
  • A total of 11 projects across the country will receive $24 million for projects that have the potential to double the amount of energy a solar panel can produce
  • Bringing a 485-megawatt photovoltaic facility to produce enough energy to power more than 145,000 homes
  • PACE (Property-Assessed Clean Energy) project to make alternative energy more easily accessible for single-families

(more…)

Seeing Climate Change in Real Time

IMG_5465_webThe science behind climate change is alarming. Concentrations of greenhouse gases are rising at an alarming rate, land ice is dropping by 258 billion metric tons per year, and every passing year is proving to be the warmest year on record. Even with all of this information, it is difficult for some to grasp the complications climate change is causing due to the fact that an average person’s day-to-day life has remained relatively unharmed.

“You can tell people that all these fossil fuels we’re using and all the CO2 that’s building up in the air is going to cause terrific problems. It’s only going to be when lower Manhattan is underwater that they’re going to start to respond,” said Allen J. Bard, the unofficial father of modern electrochemistry.

What Does Climate Change Look Like?

In order to make the reality of climate change more tangible, scientists with the Department of Energy are launching their SPRUCE (Spruce and Peatland Responses Under Climatic and Environmental Change) project to naturally demonstrate what the world could look like if there is no action taken on climate change.

(more…)