
It is often said that silicon is the 
quintessential building material for 
electronic devices. However, silicon 

is more than a building material. It is 
a very special material that allows us 
to build computers, and to learn much 
about the electronic properties of mate-
rials, e.g., these computers built with 
silicon can be used to solve for the elec-
tronic properties of silicon itself. To illus-
trate this situation, an example is given 
of how computational approaches can be 
used to understand the behavior of dop-
ants in silicon at the nanoscale.

Silicon is the material of our time. We 
live in the age of silicon; it is all around 
us in terms of electronic gadgets and 
computers. However, it has not always 
been that way.  Before the 1940s, transis-
tors did not exist at all and in the early 
1950s, transistors were made of germa-
nium, not silicon. These germanium 
transistors were not reliable; in particular 
they were difficult to package and pro-
cess. This changed by the mid1950s, 
when silicon transistors were developed. 
Within about fifteen years after the 
invention of the transistor, a silicon chip 
containing over two thousand transistors 
was constructed. Today, the Pentium-
4 processor made by Intel contains 42 
million transistors.1 By the end of this 
decade, we should see a processor con-
taining one billion transistors. This is an 
amazing and unprecedented progression 
of technology, which has affected all of 
science. Specifically, an accompanying 
revolution in our understanding of the 
theory of materials has accompanied this 
technological revolution. Silicon technol-
ogy has provided a material for serving 
both as a testing ground material and 
as the basic material for computational 
tools to study the properties of 
materials.2

One measure of scientific impact is to 
examine the technical literature. Suppose 
we examine the number of scientific 
papers on silicon published since the dis-
covery of the silicon chip. A quick search 
of the scientific and engineering litera-
ture suggests that over a quarter of a mil-
lion papers have been written over the 
last 30 years that mention silicon.1 Many 
of these papers are not directly related to 
silicon technology or silicon science, but 
a good fraction is.

For a theorist interested in electronic 
materials research, this is a “treasure 
trove” of information. Specifically, this 
vast database can be used to test and 
benchmark theoretical methodology and 
approximations. This is an imperative 

activity as the quantum theory of materi-
als deals with extraordinarily complex 
materials.  In a macroscopic crystal of 
silicon, one has about 1023 electrons 
and nuclei. In principle, the application 
of the 
known 
laws of 
quantum 
mechan-
ics allows 
one to predict all physical and chemical 
properties of such a system. However, 
given the astronomical number of par-
ticles, it is absolutely hopeless to extract 
physically meaningful results without 
some dramatic approximations. What 
approximations will work and how well? 
An obvious answer to this question is to 
test methods using the silicon database 
as a reference. This has been the route 
used by most condensed matter theorists, 
at least those interested in the electronic 
properties of solids (and liquids). 

Pseudopotentials and Density 
Functional Theory

The first realistic energy band dia-
grams for electronic materials were con-
structed using silicon data. These band 
diagrams provided information on trans-
port, optical, and photoemission spectra. 
They were constructed using empirical 
methods based primarily on optical data 
to solve the one-electron Schrödinger 
equation.3

To solve such an equation, the elec-
tronic interactions must be accurately 
described.  One can approximate these 
electronic interactions by a potential that 
contains the average interactions of all 
the chemically active (valence) electrons 
within the system. In the 1960s, these 
potentials (called pseudopotentials) were 
developed and applied to silicon and 
related materials.3 Establishing the accu-
racy of these potentials was a key test 
and the results were strikingly successful. 
One may accurately replicate the experi-
mental 
results 
with only 
a few 
param-
eters. If this initial test had failed, it 
would have suggested that a one-electron 
description of matter was not possible. 

In more recent work, electronic poten-
tials were fixed not by experiment, but 
from first principles. These first principles 
pseudopotentials often rely on density 
functional theories, which are exact in 
principle, but in practice rely on various 

approximations such as the local den-
sity approximation.  A solution to the 
electronic structure is obtained in this 
approach from the Kohn-Sham 
equation4,5   

where VionVionV  is the ion-core pseudopoten-
tial, VHVHV  is the Coulomb or Hartree poten-
tial, and VxcVxcV  is the effective exchange-cor-
relation potential. The Hartree potential 
is obtained by solving the Poisson 
equation

where  is the charge density given by 

The summation is over all occupied 
states. Within the local density approxi-
mation, the VxcVxcV  potential is functional of 
the charge density: VxcVxcV  = VxcVxcV []. 

Solving the Kohn-Sham problem cor-
responds to the construction of a self-
consistent screening potential (VHVHV  and 
VxcVxcV ) based on the charge density. The 
ion-core pseudopotential is based on 
an atomic calculation, which is easy to 
implement.6,7 For silicon, the ion-core 
potential corresponds to the nuclear 
charge plus the screening potential from 
the core electrons (1s22s22p6). The pseu-
dopotential when so screened yields the 
same solution as the all electron poten-
tial, save for the charge density near the 
core region.

Once the Kohn-Sham equation is 
solved, the total electronic energy of the 
system can be obtained from knowledge 
of the energy levels and wave functions 

The sum is over all occupied states. The 
second term subtracts off the double 
counting terms. The third term subtracts 
off the exchange-correlation potential 
and adds in the correct energy density 
functional. The last term is the ion-ion 
core repulsion term.

Silicon played a crucial role in assess-
ing the validity of this approach, which 
has proved to be reasonably accurate 
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for electronic materials. Typically, bond 
lengths may be calculated to within a 
few percent, although chemically accu-
rate bond energies are more problematic.  
Initial applications of first principles 
pseudopotentials constructed within the 
local density approximation included 
studies of silicon polymorphs under pres-
sure.8 This work produced some rather 
remarkable predictions, e.g., it predicted 
some high-pressure forms of silicon 
would be superconducting.9 This predic-
tion was later confirmed by experiment. 
Also, the first quantum molecular dynam-
ics simulations were done on silicon, 
including the first theoretical studies to 
examine the electronic and structural 
properties of liquid silicon and amor-
phous silicon.10,11

New Algorithms: 
Silicon Leads the Way

The Kohn-Sham problem, cast within 
the pseudopotential-density functional 
formalism, is easy to solve for simple ele-
mental crystals such as silicon. For crys-
talline materials, the number of degrees 
of freedom is dramatically reduced by 
symmetry, i.e., the use of Bloch wave 
functions.7 However, for systems with 
little symmetry, the Kohn-Sham prob-
lem remains difficult. Confined systems 
such as fragments of the bulk crystal, or 
extended systems such as an amorphous 
solid or a liquid are examples of such 
systems. In these systems, the solution of 
the Kohn-Sham equation involves many 
degrees of freedom and often scales 
poorly with the number of electrons in 
the system. Any solution of this complex 
problem must be handled by making sev-
eral numerical and physical approxima-
tions.7 Computing the electronic struc-

ture of a known material such as silicon 
can test these approximations. 

Here we briefly outline a popular 
algorithm for describing the electronic 
structure of a localized system.  This algo-
rithm solves the Kohn-Sham equation on 
a grid in real space.12 This method was 
first tested against traditional solutions 
for silicon clusters and quantum dots.  
The real space approach, as opposed to 
reciprocal space methods, has become 
popular and several groups have imple-
mented different variations of this gen-
eral approach.13-16

We illustrate a 
particular version of 
real space approaches 
based on high-order 
finite differencing.12,17 This approach 
overcomes many of the complications 
involved with non-periodic systems such 
as replicating the vacuum, and although 
the resulting matrices can be larger than 
with other methods such as plane waves, 
the matrices are sparse. Also, real space 
methods are easier to parallelize than 
methods using plane waves.17 Even on 
sequential machines, we find that real 
space methods can be an order of magni-
tude faster than plane wave methods.17

Real space algorithms avoid the use of 
fast Fourier transforms (FFTs) by perform-
ing all calculations in real physical space 
instead of Fourier space. A benefit of 

avoiding FFTs is that the new approaches 
have few communications between 
processors. A key aspect to the success 
of the finite difference method is the 
availability of high-order finite difference 
expansions for the kinetic energy opera-
tor. High-order finite difference methods 
significantly improve convergence of the 
eigenvalue problem when compared with 
standard finite difference methods. If one 
imposes a simple, uniform grid on our 
system where the points are described in 
a finite domain by (xi,yj,zk), we approxi-
mate

where h is the grid spacing, Cn are expan-
sion coefficients, and M is a positive M is a positive M
integer. This approximation is accu-
rate to O(h2M+2M+2M ) given the assumption 
that ψ can be accurately approximated ψ can be accurately approximated ψ
by a power series in h. This is a good 
assumption if pseudopotentials are used. 
Algorithms are available to compute the 
coefficients Cn for arbitrary order in h.18

With the kinetic energy operator 
expanded as in Eq. 5, one can set up the 
Kohn-Sham equation over a grid. One 
may assume a uniform grid, but this is 
not a necessary requirement. ψ(xi,yiyiy ,zi) 
is computed on the grid by solving the 
eigenvalue problem

FIG. 1. Real space grid configuration for atoms (light spheres) within a confined 
domain (gray sphere). Outside the domain, the wave functions vanish.

FIG. 2. Small quantum dot of silicon. The surface is passivated with H 
atoms; the interior structure corresponds to a bulk fragment.
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A typical uniform grid configuration is 
illustrated, which examines the electron-
ic structure of a localized system in Fig. 
1. In this illustration, a cluster is shown. 
Outside a given domain the wave func-
tions must vanish. 

Doping in Silicon 
Quantum Dots

In nanocrystals or quantum dots, 
where the motion of electrons (or holes) 
is limited in all three dimensions, one 
expects that both electronic and optical 
properties will be affected as well. For 
example, in bulk semiconductors, shal-
low donors (or acceptors) are crucial in 
determining the transport properties 
required to construct electronic devices.19

However, these properties are signifi-
cantly altered in highly confined systems 
such as quantum dots. Important ques-
tions arise as to whether dopants will 
continue to play a role similar to that in 
bulk semiconductors and whether new 
applications such as quantum computa-
tion will become possible.

As is typical for electronic materials, 
these questions have been explored in 
small fragments of silicon, typically pas-
sivated with hydrogen atoms. In Fig. 2, 
we illustrate such a system containing 
over a hundred silicon atoms. To exam-
ine the role of a dopant atom, one may 
consider such a dot doped with a single 
phosphorus atom.19 In such a system, 
the binding environment of the phos-
phorus-silicon bond may be strongly 
modified, due to quantum confinement, 
resulting in a large change in the elec-
tron ionization energy of the phosphorus 
donor electron. 

We can calculate the electron affinity 
(A(A( ) and ionization energies (I) and ionization energies (I) and ionization energies ( ) by calcu-I) by calcu-I
lating the total energy of the system in 
different charge states

I = I = I ETotal(N-1N-1N )- ETotal (N)N)N
A = ETotal (N) - N) - N ETotalTotalT (N+1)N+1)N  [7]

In a crystal, one can calculate the bond-
ing energy of a donor electron by find-
ing the energy difference in ionizing 
the phosphorus atom relative to adding 
an electron to an undoped crystal. The 
donor energy, Ed, is given by

Ed = A(Si)- I(P:Si)  [8]

where I(P:Si) represents the ionization 
energy of the doped crystal and A(Si) 
represents the energy of the undoped 
crystal. For a crystal, Ed is typically a few 
millielectronvolts. Owing to quantum 
confinements, the siutation is quite dif-
ferent for a quantum dot.

The ionization and affinity energies 
as a function of quantum dot radius, 
R, are shown in Fig. 3. The ionization 
energies for undoped hydrogenated Si 
nanocrystals are also given for compari-
son. The most striking feature in Fig. 3 is 

FIG. 4. Colorized contour map of the donor state charge density. The (100) 
plane shown is illustrated with the P atom in the center of the dot. 

Chelikowsky
(continued from previous page)

FIG. 5.  Charge density of the donor state localized around the P 
atom. The arrows indicate the physical size of the quantum dot.

FIG. 3. Ionization energy of undoped Si quantum dot, I(Si), ionization energy 
of a doped dot, I(P:Si), and the electron affinity of an undoped dot, A(Si).
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that the ionization energy for the doped 
dot shows a very weak dependence on 
the size of the dot. The size dependence 
of ionization energy is different from 
the behavior of the ionization energy 
in undoped Si quantum dots where 
this quantity is very large at small radii 
and gradually decreases, scaling as R-1.1. 
Although this dependence of the ioniza-
tion energy on radius is weaker than R-2

law predicted by effective mass theory, 
it is, nevertheless, a consequence of spa-
tial confinement of electrons (holes) in 
quantum dots. The absence of a strong 
dependence of the ionization energy in 
a doped dot is largely due to the weak 
screening present in quantum dots and 
the physical confinement of the donor 
electron within the dot. From Fig. 3, it is 
clear that the donor energy, Ed, is on the 
order of several electronvolts, not several 
millielectronvolts as for the bulk crystal. 
In this sense, phosphorus is not a shal-
low donor in nanoscale silicon dots. 

Figure 4 illustrates the charge density 
of the donor states in the Si quantum 
dot. This plot shows the square of the 
wave function for the highest occupied 
state. This plot confirms the localization 
of the charge around the phosphorus 
atom. This may be quantified by exam-
ining the density plotted along a line 
through the P atom as shown in Fig. 5.

Given the charge distribution of the 
dopant electron, one can evaluate the 
isotropic hyperfine parameter and the 
corresponding hyperfine splitting (HFS), 
which is determined by the contact 
interaction between the electron and 
defect nuclei.20 The method by van de 
Walle and Blöchl allows one to extract 
the isotropic hyperfine parameter and 
the resulting HFS from knowledge of the 
charge density at the nuclear site.21 The 
calculated HFS for a P atom positioned in 
the dot center are given in Fig. 6. 

At small sizes, the HFS is very large 
owing to strong localization of the elec-
tron around the impurity. As the radius 
increases, the value of the splitting 
decreases. Our calculated results scale 

with radius of the dot as 
R-1.5 (effective mass the-
ory gives R-3).19 In Fig. 6, 
we also present experi-
mental data.20 The mea-
sured values of the HFS 
fall on the best fit to cal-
culated results with the 
limit of the fit construct-
ed to approach the bulk 
value. Computational 
limitations prevent direct 
comparison to the exper-
imental size regime.  

No strong depen-
dence was found on the 
choice of the P site. We 
examined other sites by 
replacing one Si atom in 
each shell with a P atom 
while retaining the pas-
sivating hydrogen atoms. 
We found that the ion-
ization and binding ener-
gies were unchanged to 
within 5%, independent 

of the impurity atom position, save for 
the surface site.

This work illustrates how computa-
tional work may be used to describe dop-
ing in silicon nanostructures. Other work 
on these quantum dots includes exten-
sive studies of the optical properties and 
recent studies on nanowires composed 
of silicon. 

The Future 
Will silicon continue to play such an 

important role in understanding the elec-
tronic properties of materials? I suspect it 
will. As almost everyone knows, Gordon 
Moore, a pioneer of silicon technology, 
predicted in 1965 that the number of 
transistors per integrated circuit would 
double every 12 months, expanded to 18 
months in 1975. Moore’s law has worked 
for the past three decades and many pre-
dict that it will hold for the remainder of 
this decade and perhaps beyond. As long 
as Moore’s law holds for silicon technol-
ogy, I see no reason why silicon will not 
continue to be the testing ground for 
new theoretical tools for the foreseeable 
future.    
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FIG. 6. Calculated (. 6. Calculated (. 6. Calculated ( ) and experimental () and experimental () and experimental ( ) hyperfine splitting (HFS) vs. ) hyperfine splitting (HFS) vs. 
the radius, R, of the quantum dot. The solid line is the best fit to the cal-
culated values. The inset shows experimental data of Ref. 20 together with 
the fit to results of the calculations.
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