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Obtaining Corrosion Rates by Bayesian Estimation: 
Numerical Simulation Coupled with Data

by Kenji Amaya, Naoki Yoneya, and Yuki Onishi

Protecting structures from corrosion is one of the most important 
challenges in engineering. Cathodic protection using sacrificial 
anodes or impressing current from electrodes is applied to 

many marine structures. Prediction of the corrosion rates of structures 
and the design of cathodic protection systems have been traditionally 
based on past experience with a limited number of empirical formulae.

Recently, application of numerical methods such as the boundary 
element method (BEM) or finite element method (FEM) to corrosion 
problems has been studied intensively,1-8 and these methods have 
become powerful tools in the study of corrosion problems.23-24

With the progress in numerical simulations, “Inverse Problems” 
have received a great deal of attention. The “Inverse Problem” is a 
research methodology pertaining to identifying unknown information 
from external or indirect observation utilizing a model of the system, 
as shown in Fig. 1.

The background of inverse problems is the modeling and 
simulation of natural phenomena. When observations are taken of 
these phenomena, the observation data are used to infer knowledge 
about physical states. One of the most spectacular successes in the 
field of inverse problems was the invention of an inversion algorithm 
for computed tomography by Cormack (1963) and its experimental 
demonstration by Hounsfield (1973). The two shared the Nobel Prize 
in Physiology/Medicine in 1979. Applications of inverse problems 
arise in many fields of engineering as well. In the field of corrosion 
engineering, there are many issues that benefit from an inverse 
analysis approach.

In this article, the use of numerical simulation for evaluating 
corrosion rates is explained with the boundary element method as an 
example. Then, an inverse analysis method for identifying corrosion 
rates or cathodic protection currents from the (easily measured) 
potential distribution around marine structures is introduced. This 
method is based on the Bayesian estimation, with the measured 
data and numerical simulation focused on the potential distributions 
around a seaside structure.

Electrochemical Aspects and Mathematical Model

We consider a typical metal M in an electrolyte. Both anodic 
and cathodic reactions occur simultaneously on the metal surface 
according to 

	    Anodic reaction: M → Mn ne	 	 (1)

     Cathodic reaction:  1 O2 + H2O + 2e → 2OH	 (2)
	                     2

Due to these reactions, an electric current flows. The density of 
the electric current across the metal surface (i) versus electrical 
potential in the electrolyte near the metal surface against a reference 
electrode, e.g., saturated calomel electrode (SCE) – (E) curve is 
called a polarization curve, which is schematically shown in Fig. 
2. The relationship between the current density (i) and the potential 
E  for anodic and cathodic reactions (solid curves) are not obtained 
individually; only the nominal relationship E = f(i) for the two 
reactions (dashed curve) are measured.

In the natural state, the reactions become balanced at point C in 
Fig. 2, and the current corresponding to CD flows from the anode to 
the cathode. The corrosion rate is proportional to this anodic current 
density CD. It is possible to suppress the anodic current density by 
impressing a current onto the metal through the electrolyte using 
an external power supply, or by connecting the metal object with a 

more base metal, i.e., sacrificial anode, and reducing the potential 
of the metal to the critical value Ep. This method is called cathodic 
protection (CP).18

We assume that the surface of the electrolyte domain Ω is 
surrounded by Γ(Γd + Γn + Γm) as shown in Fig. 3, where Γm is the 
metal surface, and the potential and current densities are prescribed 
on Γd and Γn, respectively. The potential field in the homogeneous 
electrolyte can be modeled mathematically by the Laplace’s Eq. 3 
under boundary conditions Eq. 4 through Eq. 6 8

		             ∇2φ = 0			   (3)

		          φ = φ0  on Γd			   (4)

		    i (≡ κ ∂φ ) = i0  on Γn		  (5)
		              ∂n
		       -φ = f(i)  on Γm			   (6)

where κ denotes the conductivity of the electrolyte, and ∂/∂n the 
outward normal derivative.

Note that the potential φ is defined with reference to the metal and 
has an inverse sign to that usually employed in corrosion problems, 
wherein the potential is defined against a reference electrode such 
as SCE. φ0 and i0 are the prescribed values of the potential and the 
current density, respectively. The function f(i) is the experimentally 
determined polarization curve as stated above. In case the corroding 
structure consists of multiple materials, the number of polarization 
curves is the same as that of the material types.

By solving Eq. 3 under the boundary conditions Eq. 4-6, the 
potential near the metal surface and the current density that is 
proportional to the corrosion rate can be determined. Because the 
knowledge of physical quantities on the metal surfaces is important, 
a boundary element method in which only the surface of analytical 
domains must be discretized with elements is employed here. The 
standard boundary element procedures19-20 lead to 

	           
κ[H]    

ϕ0
    [G]    

id
      0ϕn

f(im)
i0
im

						      (7)

where the detailed expressions of matrices, [H] and [G], are given 
in References 19 and 20 and the subscripts  d, n, and m represent the 
quantities on Γd, Γn,  and Γm, respectively. The system of nonlinear 
algebraic equations, Eq. 7, is solved by using an iterative procedure, 
e.g., the Newton-Raphson method.21 An experimental verification of 
the boundary element solution is shown in References 8 through 22.

Fig. 1. Concept of inverse problems.

(continued on next page)
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Inverse Problem Approach

As described above, the corrosion 
rate of a structure can be estimated 
by solving Laplace’s equation with 
nonlinear boundary conditions, which 
are based on experimentally determined 
electrochemical polarization curves. 
However, the electrochemical polarization 
curves of the materials considered are not 
available in most practical cases. In such 
a case, the inverse approach, in which the 
current density on the surface of a metal 
structure is estimated from the measured 
potential in the electrolyte, is necessary. 
This type of inverse problem will be 
discussed here.

As shown in Fig. 4, the boundary and supplementary conditions to 
be treated in the inverse problem are given by 

		             φ  φ0 on Γd			  (8)

		       
i (≡ κ ∂ϕ) = i0  on Γn∂n 		

(9)

		             ϕ = ϕ ̄   on Γs		                        (10)

In the inverse analysis, the boundary conditions of domain Ω are 
not fully given, but the value of potential can be obtained at several 
points in the electrolyte by practical measurement to compensate for 
this lack of boundary conditions. However, even if the number of 
the measured potential datapoints is increased sufficiently to permit 
solving the inverse problem, the solution would be abnormally 
unstable due to the ill-posed problem.25

Hence, we make use of the a priori information that ϕ and i on Γm  
must satisfy the polarization characteristics.26 At first, we approximate 
the polarization curve by a function, e.g., the Tafel expression27

		          ϕ = fm (i;αj) on Γm	                       (11)

where αj (j  1, 2, ..., L; L = total number of parameters) is a 
parameter in the function. Then, the many parameters in the function 
are estimated by an inverse analysis. After obtaining the polarization 
characteristics, the potential distribution is easily calculated by direct 
analysis.

Following the usual boundary element formulation with given 
boundary conditions, we obtain

	             
κ[H]      

ϕ0
     [G]   

i
   0ϕ

f(i; αj)
i0
i

	              (12)

By considering a set of initial values of the parameters αj as the 
unknown or latent variables in the inverse problem, the following 
observation equation can be calculated by solving the direct problem 
Eq. 12

		           ϕs = h(αj )  v	               (13)

where ϕs is the vector containing the value of potential at measurement 
points, and h( ) is the vector model function which represents the 
relationship between αj and ϕs. Also, v is a random variable vector 
corresponding to measurement noise and model error in the potential.
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Fig. 2. Schematic view of polarization curve.

Fig. 3. Governing equation and boundary conditions.

Fig. 4. Governing equation and boundary conditions for inverse problem.



The Electrochemical Society Interface • Winter 2014	 55

(continued on next page)

Fig. 2. Schematic view of polarization curve.

Fig. 5. Location of electrodes and sensors.

Fig. 6. Potential distribution obtained by a direct analysis.

The inverse problem identifying the corrosion rate can be 
formulated as a maximum likelihood estimation (MLE) by regarding  
αj as random variables, whose solution can be obtained by

	                                                                          α̂     j   = arg min{ln p (ϕ ̄   s | αj )}                 (14) 	
	              	                                                          αj

	                                                             =    arg min{ln pv (ϕ ̄   s  h(αj ))}                (15)
 		                      αj

where, pv( ) is the probability density function of v, and ϕ ̄  s is the vector 
containing the measured potential data. This optimization calculation 
is repeated by modifying the parameters employing a minimizing 
technique, e.g., the conjugate gradient method. Even if the above 
procedure is followed, the solution for αj is sometimes unstable 
and it depends on the assumed initial values. In such a case, the 
Bayesian Estimation approach, which utilizes a priori information, 
is sometimes effective. For example, the a priori information could 
be that if the metal structure of interest is made of a low alloy steel, 
then the parameters of the polarization characteristics curve αj must 
be within some range. This kind of information is often available in 
engineering problems. Such information is easily expressed in the 
form of fuzzy membership functions pm(αj).27

The Bayesian Estimation solution can be formulated as

	           α̂     j   = arg min{ln p (ϕ ̄   s | αj ) ln pm (aj)}            (16)
 	                                                                         αj

	   arg min{ln pv (ϕ ̄   s h(αj ) ln pm (aj)}          (17)
 	                                                                         αj

The above approach is also termed “maximum a posteriori” 
(MAP) estimation. The mean value of the likelihood function can be 
the solution as well.

Verification
Our primary aim is to verify the applicability of the inverse analysis 

in the estimation of the polarization characteristics. To concentrate on 
the evaluation of the process, we have created necessary measured 
data ϕ ̄  s through a regular/direct boundary element analysis instead 
of carrying out real potential measurements. Such a procedure 
allows the present technique to be isolated from other factors that 
can influence the accuracy and the convergence rate. However, to 
accommodate an important aspect of experimental measurements, 
a small perturbation/error is added to the calculated results. These 
values are assumed to be the measured potential value ϕ ̄  s and used 
in the inverse analysis to determine the polarization characteristics.

Direct analysis.—Let us consider a ship that has six electrodes and 
six sensors as shown in Fig. 5. At first, we perform a direct analysis 
for the case where the current densities impressed to the electrodes 
on the left side of the hull are 0.04, 0.04, and 0.4 [A/m2] (from head 
to tail), and those on the right side of the hull are 0.01, 0.01, and 0.01 
[A/m2] (from head to tail). We assume that that the hull is made of 
painted low alloy steel plates and their polarization characteristics 
are given by

	 	 	      1
	              ϕ = 0.600  sinh(200i) + 0.650	             (18)

where the units of ϕ and i are [V] and [A/m2], respectively.
The calculation is performed by employing 764 constant elements. 

The estimated potential distribution is shown in Fig. 6.
The potentials at the location of the sensors are rounded off to 

three top figures to take into account the measurement accuracy, and 
are used as the input data in the following inverse analysis.

Estimation of potential distribution.—In this inverse problem, we 
assume that only the potential data at the location of the sensors is 
available. At first, we estimate the polarization characteristics. We 
assume that the polarization characteristics of the painted hull are 
represented in the following form

	 	 	     1
	                    ϕ = α1  sinh(α2i) + α3	               (19)

where αj(j = 1, 2, 3) is the parameter to be estimated.
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Fig. 7. A-priori information of polarization characteristics as membership 
functions.

We use a priori information about polarization characteristics, 
the membership functions of which are shown in Fig. 7. After 
estimating these parameters, we calculate the potential distribution 
by a direct analysis using the estimated polarization characteristics. 
The estimated potential distribution is shown in Fig. 8 and is found to 
agree well with the exact solution (Fig. 6).

Practical application.—The inverse analysis method is applied for 
a real truss structure. The overview of the truss type structure is shown 
in Fig. 9. Over 90 pieces of aluminum anodes are attached to this 
structure. First, the actual potential distribution around the structure 
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is measured as shown in Fig. 9. Then, the relationship between the 
CP current and the potential distribution, which is represented by 
the observation equation, is quantitatively examined. A 3D finite 
element method is employed to simulate the potential distribution. 
Finally, Bayesian estimation is performed to estimate the CP current. 
The estimated potential distribution is shown in Fig. 10. It could be 
confirmed that the Bayesian estimation worked well for these kinds 
of corrosion engineering problems.			              
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