REVERSIBLE LITHIUM INTERCALATION IN NANO-SIZED α-Fe₂O₃

D. Larcher, V. Masson, D. Bonnin^a, C. Masquelier, Y. Chabre^b and J-M. Tarascon

LRCS, UPJV, 33 rue Saint-Leu, Amiens, France ^a ESPCI, 10 rue Vauquelin, Paris, France ^b Univ. Joseph Fourier, Saint Martin d'Hères, France

In the early 80's, numerous studies focussed on the electrochemical reduction of 3d-metal oxides (M = Mn, Co, Fe, V) in lithium cells. When starting from oxides with low metal oxidation state (Cu₂O, NiO, MnO, FeO, CoO), metallic nanograins/clusters are formed as soon as the reduction process starts. In contrast, when starting from higher cationic oxidation states (Co₃O₄, Fe₃O₄, Mn₃O₄, Fe₂O₃), intermediate reduced phases are expected in the early stage of the reduction process. This was well documented by *Thackeray et al.* who clearly showed that rock salt-type lithiated metal oxides are formed through lithium insertion and concomitant cationic jump. Upon further reduction, these phases decompose into metallic clusters and lithia [1-3].

In a recent study, we observed that either CoO or $Li_xCo_3O_4$ would form upon reduction of spinel Co_3O_4 depending on the applied current density (i.e. discharge rate / surface area ratio)[4]. In the present study, we focus in a similar way on the particles size effect on the reduction of iron oxides.

In the case of α -Fe₂O₃ (hematite) it was reported that a small amount of inserted lithium (referred to as x_c) initiated a transition of the close-packed anion array from hexagonal to cubic stacking [1]. We found that this critical concentration actually corresponds to the intercalation of lithium in the corundum structure (voltage feature at ca. 1.6 V vs. Li⁺/Li, fig. 1), and that this x_c value is mainly governed by the size of the reactive particles. In this work, we compare the reactivity of two samples of hematite labelled as follows: M-Fe₂O₃ made of large particles (~0.5 µm), and n-Fe₂O₃ made of nanosized particles (200 Å). While around 0.05 Li per formula unit can be inserted in M-Fe₂O₃, up to 1 Li can be inserted in n-Fe₂O₃ without phase transition (fig. 1). Unsuccessful attempts to increase x_c values by applying lower currents suggest that the particles size is the main parameter herein involved. Through OCV and in situ XRD experiments, we clearly established the biphasic nature of the reduction reaction for M-Fe₂O₃ (fig. 2) and the monophasic process along lithium insertion in n-Fe₂O₃, leading to $\sim \alpha$ -Li₁Fe₂O₃ (fig. 3). The reduction products were also characterized by EXAFS/XANES and Mössbauer effect spectroscopy. The better structural reversibility of the monophasic process with respect to the biphasic one was confirmed by electrochemical cycling tests conducted on hematite samples with various particles sizes.

Through this work, we wish to stress that a careful control of the texture of electrochemically active oxide particles represents an alternative and a promising route in view of reversible and benign intercalation reactions in materials so far totally disregarded for such applications.

- [1] M.M.Thackeray, W.I.F.David and J.B.Goodenough, Mat. Res. Bull 17, 785-793 (1982)
- [2] M.M.Thackeray, S.D.Backer and K.T.Adendorff, Solid State Ionics 17, 175-181 (1985)
- [3] M.M.Thackeray, W.I.F.David, P.G.Bruce and J.B.Goodenough, *Mat. Res. Bull* 18, 461-472 (1983)
- [4] D.Larcher, G.Sudant, J.B.Leriche, Y.Chabre and J.M.Tarascon, *J. Electrochem. Soc.*, in press.

Fig. 1: Composition vs. voltage curve for nano-sized α -Fe₂O₃ (n-Fe₂O₃) and micron-sized α -Fe₂O₃ (M-Fe₂O₃). Rate: 1 Li in 5 hours.

Fig. 2: *In-situ* XRD evolution upon reduction of micronsized α -Fe₂O₃ vs. Li (0<x<1 per Fe₂O₃), c=rocksalt phase, h= α -Fe₂O₃. Rate = 1 Li in 5 hours.

Fig. 3: Bragg peak shift of nano-sized α -Fe₂O₃ upon reduction in Li cell (0<x<1 per formula unit) at a constant rate of 1 Li in 5 hours.