Pt-Mo catalyst for CO tolerance in PEMFC

Hanwei Lei, Devon Renock, David J. Tarnowski, Brian Glomski, Alex Schechter, Mike Wixom

T/J Technologies, Inc.,3850 research Park Drive Ann Arbor, MI 48106

Introduction

CO-tolerance is of intense importance in the development of PEMFC anode catalysts since most reformate fuels contain 50~100 ppm CO which can easily poison anode Pt catalyst. It was reported that carbon supported Pt-Mo catalyst showed better CO-tolerance than the commercial Pt-Ru/C catalyst¹. T/J Technologies has also been developing Pt-Mo catalyst. We observed interesting Pt-Mo interaction and its effect to CO-tolerance by using ad-atom, powder microelectrode and CO-stripping methods. We also observed that carbon supported Pt-Mo activity in real fuel cell depends strongly upon the catalyst preparation procedures, for example, borohydride reduction, "colloidal " dispersion, chemical vapor deposition (CVD) etc. Our systematic investigation of the Pt-Mo system illustrates new progress in this area, which will benefit the R&D of other CO-tolerant PEMFC catalyst systems.

Experimental

The Pt/Mo adatom electrode was prepared by soaking Pt powder microelectrode in 10mM $(NH_4)_6Mo_7O_{24}$ solution for several minutes with further careful rising using Nano-pure water. The CO-stripping was performed in powder microelectrode cell² with a Pt counter electrode and RHE as a reference as seen in figure 1.

Fuel cell performance was measured at 80° C with zero back pressure H₂(+100ppmCO) and O₂ or air at anode and cathode side respectively. A Scribner load bank was used for testing after 2~3 days' cell conditioning. Nafion 117 was used to prepare MEAs with 0.5mg/cm² Pt at the cathode. Total metal loadings of anode electrodes (Pt + Mo or Pt + Ru) were about 0.5 mg/cm². The anode Pt-Mo/C catalysts were prepared by T/J Technologies' proprietary procedures, the CO-tolerance activity was compared with that of the commercial carbon supported Pt-Ru catalyst.

Results and discussion

Figure 2 shows CO-stripping profiles on Pt and Pt/Mo adatom electrodes after adsorbing CO at 0.1V for 15 minutes and flushing CO in 0.5M H_2SO_4 with purging N₂ for at least 30 minutes. In the case of Pt/Mo adatom, the CO stripping occurs from ca. 0.2V and displays a clear peak around 0.4V, lower than that of Pt-Ru/C. This may indicate promising CO-tolerance for Pt-Mo system.

Figure 3 shows the fuel cell performance using TJ Pt-Mo/C (a) anode catalyst. It showed enhanced CO-tolerance and H_2 oxidation activity in comparison with the commercial Pt-Ru/C catalyst.

Acknowledgement

This work was supported by the National Science Foundation via the SBIR program.

References

1. S. Mukerjee, S. J. Lee, E. A. Ticianelli, J. McBreen, B. N. Grgur, N. M. Markovic, P.

N. Ross, J. R. Giallombardo, E, S. De Castro, Electrochem. Solid-state Let., **2**, *1999*, 12

 H. Lei, D. Renock, D. Tarnowski, J. Elam, I. Song, L. Thompson, The 199 th Meeting of the Electrochemical Society Meeting Abstracts. The Electrochemical Society Inc., 2001, abstract #357

Figure 1. A powder microelectrode cell.

Figure 2. CO stripping profiles on Pt (solid line) and Pt-Mo adatom (dashed line) electrodes.

Figure 3. Fuel cell performance comparison of TJ-Pt-Mo/C vs commercial Pt-Ru/C. (a) TJ-Pt-Mo/C, (b) commercial Pt-Ru/C