Electrochemical Noise Analysis of Pitting Corrosion of

Thermally Aged Duplex Stainless Steel

Chan-Jin Park^{*} and Hyuk-Sang Kwon^{*}

*Dept. of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 373-1, Guseong-dong, Yuseong-gu, Daejon 305-701, Korea

Mechanical and corrosion properties of austenitic-ferritic $(\alpha+\gamma)$ duplex stainless steels (DSS) are significantly degraded due to precipitation of secondary phases such as sigma (σ), chi (χ) or alpha prime (α') phase when exposed to temperatures of 450 °C ~1100 °C due to an improper heat treatment or welding¹. In view of corrosion, these secondary phases may act as preferential sites for pitting corrosion resulting from a depletion of chromium (Cr) or molybdenum (Mo) around them ¹⁻³.

The motivation of this work is to investigate the effects of secondary phases on metastable pitting as a precursor of stable pitting corrosion and, additionally, on the further progress to stable pitting of 25Cr-7Ni-3Mo-0.25N DSS in chloride solution, through electrochemical noise analysis (ENA).

Electrochemical potential and current transients of the alloy were measured in 10 % ferric chloride solution with a zero resistance ammeter (ZRA), and then analyzed by power spectral density (PSD) and by corrosion admittance (A_c) spectrum.

With aging at 850 °C, the passive film of the alloy became significantly unstable as represented by an increase in power spectral density (PSD), and a transition from a metastable pitting state to a stable one was observed. In the corrosion admittance spectrum, the number of negative A_c corresponding to the state of localized corrosion increased with aging. This suggests that the precipitation of σ phase considerably degraded the passive film by depleting Cr and Mo adjacent to the σ phase that is formed at the α/σ or γ/σ phase boundaries, thereby leading to the initiation of the pitting corrosion. However, the Cr and Mo at the α/σ or γ/σ phase boundaries, which were once depleted due to the precipitation of the σ phase, were partly replenished by the diffusion of Cr and Mo from the surrounding matrix with aging time longer than 1 hr. The initiation of pitting corrosion appears to be associated with the precipitation density of the σ phase with an effective size needed to induce the sufficient depletion of Cr and Mo around it.

References

- 1. J. O. Nilsson, Mater. Sci. Technol. 8 (1992), pp 685.
- 2. J. S. Kim, H. S. Kwon, Corrosion (2000), pp 32.
- 3. C. J. Park, M. S. Thesis, KAIST (1999).

Fig. 1. Potential and current transients of the DSS, aged for 20 min at 850 $^{\circ}$ C, in 10 % ferric chloride solution at 60 $^{\circ}$ C.

Fig. 2. Effects of aging at 850 °C on the current PSD of the alloy, obtained from the corresponding current transients.