Chemical Mechanical Polishing for Copper in Hydrogen Peroxide-based Slurries Tzu-Hsuan Tsai and Shi-Chern Yen Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 106

Abstract

Chemical mechanical polishing (CMP) is a promising method of delineating copper patterns in this process [1-2]. However, the slurry composition and electrochemical mechanisms of copper during CMP may be more complicated. Therefore, more thoroughly understanding the electrochemical effects on removal rates and surface finishing is critical to achieving copper metallization.

study This investigated the electrochemical characteristics of copper in H2O2-based slurries during CMP. Electrochemical OCP measurements were performed in accurately predicting CMP performance. In this study we prepared various chemical compositions of CMP slurries dependent mainly on the Kaufman's model [3]. 5 w% 50 nm- Al_2O_3 was chosen to be abrasives. H_2O_2 and urea- H_2O_2 (U- H_2O_2) were selected to be oxidants in slurry solutions. Moreover, NH₄OH was also added to enhance the complex reaction of Cu. We took advantage of the electrochemical methods to investigate the effect of reactants and additives in the Cu CMP process. The experimental results show that the H₂O₂-based slurry displayed a good removal rate and planarized surface. Furthermore H₂O₂ is always unstable, especially adding NH_4OH . Therefore we also choose $U-H_2O_2$ as an oxidizer. The electrochemical measurements of copper CMP in U-H₂O₂ system are presented.

Fig. 1 depicts XRD patterns recorded from 10 to 60 degrees for the copper films. The XRD patterns for 2Θ the copper before polishing only shows the reflections $d_{111} \ (2 \ominus = 43.32^\circ \) \ \text{and} \ d_{200} \ (2 \ominus = 50.47^\circ \) \ \text{corresponding}$ to metallic copper. For copper dipped in 5 v% U-H₂O₂ + 0.1 w% BTA + 1 v% NH₄OH slurry for 5 min, the XRD pattern, in addition to metallic copper peaks, shows the presence of Cu₂O. However, the peak resulted from Cu₂O would disappear after polishing as shown in Fig. 1(c). Moreover, the surface roughness after CMP would be reduced to less than 10 nm, as shown in Fig. 2. In addition, the open circuit potentials (OCP) of various slurries were investigated as shown in Fig. 3. As the polishing pressure was released, the OCP curves of H₂O₂based slurries would rise rapidly. This increasing in OCP indicates that the passive film forms on the metal surface. However 5 v% U- H₂O₂ shows more oxidation capability to protect copper surface than H_2O_2 . As 0.1 w% BTA + 1 v% NH₄OH is added, U-H₂O₂-based solution displays gradual increase after release of polishing pressure, indicating that a gradual thickening of the passive film with time. On the other hand, the H₂O₂ shows an abrupt increasing in OCP, indicating a fast and unstable oxidation takes place. Therefore, U- H₂O₂ displays a better controllability than H_2O_2 . Compared with H_2O_2 system, U-H₂O₂ makes better surface properties, and gets more stable slurries as NH4OH is added. The electrochemical behaviors of copper CMP in H2O2-based slurries have been explored in this study.

Reference

 J. M. Steigerwald, R. Zirpoli, S. P. Murarka, D. Price and R. J. Gutmann, *J. Electrochem. Soc.*, **141**, 10, p2842-2848 (1994).

- D. T. Price, R. J. Gutmann and S. P. Murarka, *Thin Solid Films*, **308-309**, 523-528 (1997).
- F. B. Kaufman, D. B. Thompson, R. E. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, *J. Electrochem. Soc.*, **138**, 11, 3460-3465 (1991).

Fig. 1. XRD patterns for copper CMP in the slurry of $5 v\% U-H_2O_2 + 0.1 w\% BTA + 1 v\% NH_4OH.$

Fig. 2. AFM micrographs show the features of copper surface after polishing in the slurry of 5 v% U- $H_2O_2 + 0.1$ w% BTA + 1 v% NH₄OH.

Fig. 3. OCP vs. time curves of anodic copper films: (a) $5 v\% H_2O_2$; (b) $5 v\% U-H_2O_2$; (c) $5 v\% H_2O_2 + 0.1 w\% BTA + 1 v\% NH_4OH$; (d) $5 v\% U-H_2O_2 + 0.1 w\% BTA + 1 v\% NH_4OH$ and (e) $1 v\% NH_4OH$. (Polishing: at 5 psi/100 rpm)