Vibrations and Dynamics of Multi Atomic Encapsulates in Fullerene Cages M. Krause^{1,2}, P. Georgi¹, L. Dunsch¹, H. Kuzmany², H. Shinohara³, K. Vietze⁴, G. Seifert⁴ ¹Institut für Festkörper- und Werkstofforschung Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany ²Institut für Materialphysik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria ³Department of Chemistry, Nagoya University, Nagoya 464-01, Japan ⁴Technische Universität Dresden, Institut für physikalische Chemie, D-01062 Dresden, Germany Raman and infrared spectroscopy, supplemented by quantum-mechanical calculations, were used to clarify bonding and dynamical properties of four atomic encapsulates in novel endohedral fullerenes, as e.g. $Sc_3N@C_{80}$, and $Sc_2C_2@C_{84}$. Low frequency Sc_3N-C_{80} and internal Sc_3N modes provided a clear evidence for the formation of a Sc_3N-C_{80} bond and a strong scandium-nitrogen bond in $Sc_3N@C_{80}$, which are partly responsible for the unusual high stability and abundance of this material [1]. A distinct different behavior was found for endohedral discandium carbide, Sc_2C_2 , where the C_2 unit is only weakly bonded to the scandium atoms and the surrounding fullerene network. [1] M. Krause, H. Kuzmany, P. Georgi, L. Dunsch, K. Vietze, G. Seifert, J. Chem. Phys. **115**, 6596 (2001) We acknowledge financial support from the European Union, TMR project ERBFMRX-CT97-0155.