Molecular Recognition of Adenine, Adenosine and ATP at the Air-Water Interface by a Fullerene-Uracil Adduct

Vu T. Hoang,^a Melvin E. Zandler,^a Francis D'Souza,^{*a} Reneta Marczak,^b Krzysztof Noworyta,^b Wlodzimierz Kutner^{*b}

^aDepartment of Chemistry, Wichita State University, 1845 Fairmount, Wichita, KS 67260-0051, US; E-mail: Francis.DSouza@Wichita.edu ^bInstitute of Physical of Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; E-mail: wkutner@ichf.edu.pl

Molecular recognition of adenine, adenosine or adenosine 5'-triphosphate (ATP) at the airinterface uracil-appended water by an [60] fullerene, C_{60} , was studied by using the Langmuir and Langmuir-Blodgett techniques. For that purpose, C_{60} was derivatized to bear an uracil base, i.e., 2-(5'-uracil)fulleropyrrolidine (1) was prepared. This newly synthesized fullerene adduct was characterized by ESI-MS well as the UV-visible, IR, NMR as spectroscopy and electrochemistry techniques. The molecular recognition driven base-pairing between C₆₀-uracil and adenine, adenosine or ATP, modeled by using ab initio B3LYP/3-21G(*) calculation methods, revealed the

Watson-Crick type base-pairing. The isotherms of surface pressure versus area per molecule for the Langmuir films of 1 were obtained and compressibility of the values of films determined. Addition of a conjugate base, such as adenine, adenosine or ATP to the water subphase stabilized the monolayer film of 1 and increased the limiting area per molecule extrapolated to the zero surface pressure, A_1 , from 2.2 ± 0.1 nm² for water subphase in the absence of the base to 3.1 ± 0.2 for ATP present in the subphase. The determined A_1 values are close to those theoretically estimated for the base-paired conjugates at horizontal orientation in the monolayer films. The of Langmuir-Blodgett films 1 were characterized by electrochemical methods. The Brewster angle microscopy images of films of 1 revealed different aggregation properties in the presence and absence of the conjugate bases in the water subphases.