CONTROLLED SYNTHESIS OF HIGHLY-CRYSTALLIZED ANATASE AND RUTILE TIO₂ NANOCRYSTALLITES

Yuji WADA,* Hengbo YIN, Takayuki KITAMURA, and Shozo YANAGIDA

Material and Life Science, Graduate School of Engineering, Osaka University, Yamada-oka, Suita, Osaka 565-0871, Japan

Anatase TiO₂ has large band gap energy and suitable redox potentials for practical use in photocatalysis and photoelectronics. Rutile TiO₂ exhibits higher thermal stability than anatase and brookite TiO₂, and has the band gap energy and potentials of conduction and valence bands similar to anatase. Research on rutile TiO₂ nanocrystallites has not well been developed because synthesis of pure rutile nanocrystallites with controlled size and crystal shape is still difficult. We present synthesis methods for selective preparation of nanosized phase-pure anatase and rutile TiO₂ using amorphous TiO₂ as a starting material and acids such as hydrofluoric, hydrochloric, nitric, and citric acids as catalysts (Scheme 1). Well-dispersed anatase and rutile nanocrystallites were simply prepared. The sample preparation conditions are listed in Tables 1 and 2.

The powder XRD and HRTEM measurements showed that samples A5, A8, and A12 were phase-pure nanosized anatase TiO₂ with narrow particle size distribution ranging from 3 to 20 nm. The presence of HF and another acid, i.e., HCl or HNO₃, as a cooperative acid catalyst enhanced crystallization of anatase from amorphous during the hydrothermal processing. The average particle sizes of the sample A5, A8, and A12 were 9, 12.8, and 12.3 nm, respectively. A5 and A8 samples were of regular crystal surfaces, but the crystal surface of A12 was irregular.

Well-dispersed rod-like rutile nanocrystallites (R3) with average sizes of 12.1 by 30.5 nm in width and length were prepared using citric and nitric acids as catalysts by autoclaving amorphous TiO_2 aqueous suspension at pH

1.09 and 150 $^{\rm O}$ C for 22 h. When the pH value was decreased to 0.8, the particle sizes were increased to 14.8 by 53.2 nm (R2). The particle sizes were increased to 31.9 by 72.5 nm when the autoclaving was carried out at 220 $^{\rm O}$ C for 13 h (R7). The nanocrystallite sizes were increased by lowering the pH value and increasing the autoclaving temperature.

The crystallization processes of anatase and rutile TiO₂ are postulated in Scheme 2.

Protonation of amorphous TiO₂ with acids leads to the phase-pure formation of anatase TiO₂ nanocrystallites. Chelation and protonation of amorphous TiO₂ result in the formation of phase-pure rutile TiO₂ nanocrystallites.

REFERENCES

(1) H. Yin, Y. Wada, T. Kitamura, and S. Yanagida, *J. Mater. Chem.* 11, 1694, 2001.

Scheme 1. Hydrothermal synthesis processes of anatase and rutile TiO_2 nanocrysatllites from amorphous phase.

Table 1.	Preparation conditions of
nanosize	d anatase TiO.

SamplesHF (M)HCl HNO3 (M)Autoclaving time (220°C)A50.121.382A80.121.384A120.121.584
A5 0.12 1.38 2 A8 0.12 1.38 4 A12 0.12 1.58 4
A8 0.12 1.38 4 A12 0.12 1.58 4
A12 0.12 1.58 4
Table 2 Dreparation and itians
radie 2 . Preparation conditions
of nanosized rutile TiO ₂ .
Autoclaving
Samples pH Temp. ⁹ C Time/
R2 0.8 150 22
R3 1.09 150 22
<u> </u>
$\stackrel{^{*}H_{2}O}{H_{0}} \stackrel{\stackrel{O}{}H_{2}^{+}}{OH} \stackrel{^{*}H_{2}O}{H_{0}} \stackrel{\stackrel{O}{}H_{2}^{+}}{H_{0}} \stackrel{O}{}H_{0}^{+} }{}H_{0}^{+} }{}H_{0}^{$
Face-sharing to anatase TiO ₂ formation
$\begin{array}{c c} \overset{OH_{2^{+}}}{} & \overset{OH_{2^{+}}}{} & \overset{OH_{2^{+}}}{} & \overset{OH_{2^{+}}}{} & \overset{OOH_{2^{+}}}{} & \overset{OOH_{2^{+}}}{$
Polycondensation

Edge-sharing connection to rutile TiO₂ formation

Scheme 2. Crystallization of anatase and rutile TiO_2 from amorphous phase catalyzed by acids.