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Abstract

Protons are ubiquitous mediators of energy
transformation in many systems (1). In the mntext of
eledrochemicd systems, paymer eledrolyte membrane
(PEM) fuel cdls are mnsidered promising autonomic
energy converters, exhibiting: high efficiencies, low
palution levels and technologicd versatility (2). This
promising prosped promotes an intense interest in PEMs.
Whil e the presence of liquid-like water in the nanoparous
structure of current PEMs promotes high rates of proton
transfer, it imposes pendties aswociated with low
operating temperatures and proper water management in
the fuel cdl (3). In view of the present restrictions,
ohtaining high proton conductivities with small amounts
of water, tightly bound to a stable host polymer and, thus,
restricted in mohili ty, could result in major technologicd
breathroughs (4,5). Clealy, this requires fundamental
understanding of both the mechanisms of proton transfer
and the nature and charader of the water in these
materials. The present theoreticd investigation addresses
the latter issue, and extends the theoreticd work
previously developed by the authors (6,7).

The state of water within the nanopaes is, in
general, different from that of bulk water. Neutron
scatering experiments carried out by Lee et a (8) on
water confined in nanopares of perfluorinated ionomer
membranes $ows that the radial distribution functions
agree with that of bulk water for only the fully hydrated
pores. The predse form that the water adopts under the
influence of both pore anfinement and the eledricd field
due to the anionic groupsis gill not understood From the
above discussion, it is evident that the thermodynamic
properties of water in these nanopares will differ from
that of bulk water. The problem is rendered more
difficult than the more traditional bulk or maaoscopic
cdculation because of the following reasons:-

(1) Whilethevalueof N, the number of water
moleaules, is large it is not large enoudh for its value to
be taken to be infinity. The volume of the nanopae
cannot be set equal to infinity and so the thermodynamic
limit, often used, cannot be aty longer invoked. This
limit alows wveral simplificaions that are no longer
possble to make.

(2) Thetopdogicd reduction theorems that can be proved
and used in the graphical cluster theory for infinite
number of particles become doubtful for this relatively
smaller system.

(3) Because of the presence of the field generated by the
anionic sites the property of trandational invarianceis no
longer tenable and the resulting simplificaions cannot be
employed.

Despite the lack of these simplifying features,
that can normally be eploited, the Ornstein-Zernicke
(OZ) integral can be exactly derived:

h(LZ):c(LZ)+Id3c(L3)n1(3)h(3,2)
Here, h is the pair correlation function, c is the direa
correlation function, and n, is the one-body distribution
function. The aguments of the functions and the

integration variables are shorthand representations of the
center-of-mass and orientation of each water moleaule.
Once h has been computed the relevant thermodynamic
properties can be cdculated by using standard formulae
from statistical thermodynamics.

In order to cdculate h the OZ equation must be
solved. This is done by iterative methods (9), starting
with a guessed form in the right hand side, the eguation
solved numericdly to oktain an improved version, which
then becomes the input for the next step. The trial
functions generally contain parameters whose values are
improved by the cdculation. Such an approach is
generally used along with the trandlational invariance and
involves intensive mmputer applicaion. In our case, the
problem is even more severe due to the reasons
mentioned above. We find, however, that the Ornstein-
Zernicke equation can be recat into the form of a
functional that possesses variational properties with
resped to the trial functions. Using a matrix notation to
represent the OZ equation:

h=c+ch=c+horF(h)= h-c-h&=0
We find that a variational solution, h,, for the integral
equation may be written as.
h,=h -(1+h,)F(h,)
Here, htand hrare trial or guessed functions depending
upon sets of initially chosen parameters with resped to
which h, displays gationary properties.

In this work we cmnsider the well-known dired
correlation function derived for hard spheres (9):

o(X) = —)\1—617A2x—%l7/\1x3

Here, x isrelated to the distance between the two hard
spheres and the other parameters will be employed as
variational parameters in order to adapt this function to
the interior of a charged nanopare.
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