Photoluminescence and Optical Properties of Gadoped ZnO Thin Film Grown on (0001) Sapphire Substrate by rf Magnetron Sputtering through Rapid Thermal Annealing

Jung Cho<sup>a,b</sup>, KiHyun Yoon<sup>a</sup>, MinSeok Oh<sup>b</sup>, and WonKook
Choi<sup>b</sup>

<sup>a</sup>Department of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea

<sup>b</sup>Thin Film Technology Research Center, Korea Institute of Science and Technology, Cheongryang P.O. Box 131, Seoul 136-791, Korea

Transparent and conductive Ga (1wt%)-doped ZnO (GZO) films for UV emission device were deposited at  $600^{\circ}$ C by rf magnetron sputtering on  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0001). To improve electrical and optical photoluminescene (PL), and the mobility of GZO thin films, a rapid thermal annealing was performed between  $800\,\square\,$  ~  $1000\,\square\,$  in  $\,N_2$  atmosphere. Annealed GZO thin films at  $800^{\circ}$ C showed low resistivity of  $\rho$ =2.6 x  $10^{-4}$  $\Omega$  cm and  $n_e{=}3.9x10^{20}{\text{/cm}^3},$  and high mobility of  $\mu{=}60$ cm<sup>2</sup>/V s. These properties are explained in terms of translation of Ga atoms from interstitial to substitutional site. After annealing, optical band gap was also increased from  $E_g$ = 3.27 eV to 3.35 eV by Moss-Burstein effect. As  $n_e$  is increased, all the binding energies of O1s, Zn2p<sub>3/2</sub>, and  $Ga2p_{3/2}$  core-levels in XPS spectra were shifted to lower binding energy. After annealing, PL spectra of GZO films show dominant near-band edge emission corresponding to free exciton emission.



Fig. 1 Square of the absorption coefficient as a function of photon energy for the Ga doped ZnO (GZO) deposited at  $600\,^{\circ}\text{C}$  with and without RTA treatment.



Fig. 2 Zn  $2p_{3/2}$ , O1s & Ga 2p core-level spectra of asdeposited GZO films.



Fig. 3 Zn 2p<sub>3/2</sub>, O1s & Ga 2p core-level spectra of annealed GZO films.