Photoluminescence and Optical Properties of Gadoped ZnO Thin Film Grown on (0001) Sapphire Substrate by rf Magnetron Sputtering through Rapid Thermal Annealing Jung Cho^{a,b}, KiHyun Yoon^a, MinSeok Oh^b, and WonKook Choi^b ^aDepartment of Ceramic Engineering, Yonsei University, Seoul 120-749, Korea ^bThin Film Technology Research Center, Korea Institute of Science and Technology, Cheongryang P.O. Box 131, Seoul 136-791, Korea Transparent and conductive Ga (1wt%)-doped ZnO (GZO) films for UV emission device were deposited at 600° C by rf magnetron sputtering on α -Al₂O₃(0001). To improve electrical and optical photoluminescene (PL), and the mobility of GZO thin films, a rapid thermal annealing was performed between $800\,\square\,$ ~ $1000\,\square\,$ in $\,N_2$ atmosphere. Annealed GZO thin films at 800° C showed low resistivity of ρ =2.6 x 10^{-4} Ω cm and $n_e{=}3.9x10^{20}{\text{/cm}^3},$ and high mobility of $\mu{=}60$ cm²/V s. These properties are explained in terms of translation of Ga atoms from interstitial to substitutional site. After annealing, optical band gap was also increased from E_g = 3.27 eV to 3.35 eV by Moss-Burstein effect. As n_e is increased, all the binding energies of O1s, Zn2p_{3/2}, and $Ga2p_{3/2}$ core-levels in XPS spectra were shifted to lower binding energy. After annealing, PL spectra of GZO films show dominant near-band edge emission corresponding to free exciton emission. Fig. 1 Square of the absorption coefficient as a function of photon energy for the Ga doped ZnO (GZO) deposited at $600\,^{\circ}\text{C}$ with and without RTA treatment. Fig. 2 Zn $2p_{3/2}$, O1s & Ga 2p core-level spectra of asdeposited GZO films. Fig. 3 Zn 2p_{3/2}, O1s & Ga 2p core-level spectra of annealed GZO films.