Persistent Energy Transfer in CaAl₂O₄: Ce³⁺, Tb³⁺ Phosphor^{*}

D. Jia¹, W. Jia^{1,2}, R. S. Meltzer¹, X. Wang³, W. M. Yen¹

1.Department of Physics and Astronomy, University of Georgia, Athens, GA 30602;

2.Department of Physics, University of Puerto Rico, Mayaguez, PR 00680;

3.Department of Physics, Georgia Southern University, Statesboro, GA 30460

Most practical green phosphors activated by Tb^{3+} can be sensitized by Ce^{3+} . The green emission of Tb^{3+} is greatly intensified due to efficient energy transfer from Ce^{3+} to Tb^{3+} . In most of the cases, 95% of Tb^{3+} emission arises from the Ce^{3+} energy transfer if doping levels are appropriate. The Ce^{3+} to Tb^{3+} energy transfer rates can be as high as 10^8 to 10^{10} s⁻¹. In this work, we propose a new approach to produce persistent phosphorescence through energy transfer from Ce^{3+} to other activators.

Rare earth doped alkali-earth aluminates are very important phosphors for display technology. Doping Tb^{3+} into alkali-earth aluminate produces 543nm green emission. Tb^{3+} is found to have a relatively weak emission with rather long lifetime of ~2.1ms in the forbidden 4f-4f transition in CaAl₂O₄. In the Tb^{3+} singly doped CaAl₂O₄ samples persistent Tb^{3+} green emission was observed but with a short persistence time (about one hour). Ce³⁺ singly doped CaAl₂O₄ is found to have persistent phosphorescence in the deep blue at 400nm with persistence time of up to 10 hours. The Ce³⁺ allowed 4f-5d transition is much stronger than the Tb^{3+} 4f-4f transition and has a very short lifetime of only 13.5ns.

When Tb^{3+} and Ce^{3+} are codoped into CaAl_2O_4 , the samples show very strong Tb^{3+} green afterglow at 543nm with persistence time as long as the blue Ce^{3+} afterglow of singly doped samples. From the emission, excitation, afterglow curves, transition lifetime and afterglow decay time measurements, (Fig. 1; Fig. 2) it is found that the energy of the green emission of Tb^{3+} is predominantly from Ce^{3+} excitation. The energy transfer rate from Ce^{3+} to Tb^{3+} in CaAl_2O_4 is of the order of 10^9 s⁻¹. The long green Tb^{3+} afterglow is found to come from the energy transfer from the persisted Ce^{3+} transitions.

In addition, thermoluminescence and photoconductivity of the Ce^{3+} singly doped samples, Tb^{3+} singly doped samples and Ce^{3+} and Tb^{3+} codoped samples have been studied. The nature of trapping centers and the trapping dynamics are discussed.

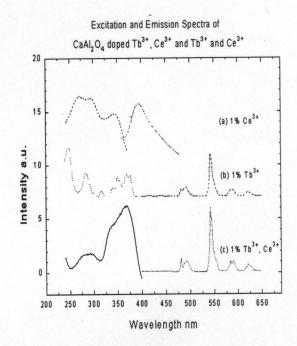
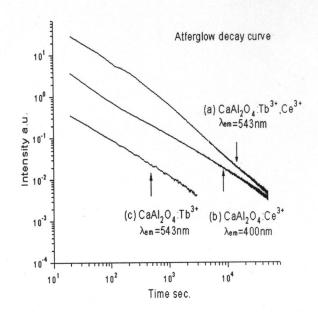
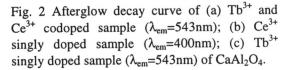




Fig. 1 Emission and excitation spectra of (a) Ce³⁺ singly doped sample ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 400$ nm); (b) Tb³⁺ singly doped sample ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 543$ nm); (c) Tb³⁺ and Ce³⁺ codoped sample ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 543$ nm) of CaAl₂O₄.

* Supported by the NSF under Grant DMR 9986693