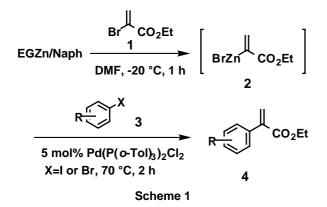

Use of Electrogenerated Highly Reactive Zinc in Facile Synthesis of 2-Arylpropenoic Acid Esters and Anti-inflammatory Agents

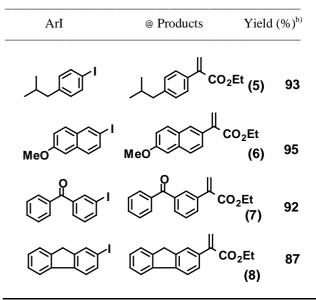

Masao Tokuda, Aishah A. Jalil, and Nobuhito Kurono

Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University Sapporo 060-8628, Japan

We have already reported a new method for preparation of reactive zinc (EGZn) by electrolysis¹⁻³ and its use in isoprenylation¹ and allylation^{2.3} as well as cross-coupling of functionalized alkyl iodides with aryl halides.⁴ @Recently, we further developed a new electrochemical method for preparation of more highly reactive zinc (EGZn/Naph) by using naphthalene as a mediator and used it in cross-coupling reaction of bromoalkanes with aryl halides.⁵ In this paper, we report the successful use of EGZn/Naph in efficient cross-coupling of ethyl 2-bromoacrylate with aryl iodides or aryl bromides and in facile synthesis of the precursors of anti-inflammatory agents.

Highly reactive zinc (EGZn/Naph) was readily prepared by electrolysis of a DMF solution containing naphthalene and 0.1M Et_4NClO_4 in a one-compartment cell fitted with a platinum cathode and a zinc anode.⁵ The reaction of EGZn/Naph with ethyl 2-bromoacrylate (**1**) in DMF at -20 °C gave quantitatively the corresponding organozinc bromide **2**, which was confirmed by the quantitative formation of ethyl acrylate upon acid treatment. The reaction of **2** with aryl iodides at 70 °C for 2 h in the presence of 5 mol% of Pd(P(o-Tol)₃)₂Cl₂ gave the corresponding cross-coupled products **4** in high yields (Scheme 1). Similar reaction of **2** with aryl bromides occurred to give **4** in high yields when THF, instead of DMF, was used as a solvent. These results are summarized in Table 1.

The present cross-coupling reaction using EGZn/Naph was successfully applied to an efficient synthesis of the precursor of various anti-inflammatory agents such as ibuprofen (5), naproxen (6), ketoprofen (7), and cicloprofen (8) (Table 2).


Table 1. Synthesis of Ethyl 2	2-Arylpropenoates (4) by			
Palladium-Catalyzed	Cross-Coupling of Aryl			
Halides (3) with Organozinc Bromide 2 Prepared				
from EGZn/Naph and Ethyl 2-Bromoacrylate ^{a)}				

entry R of 3	R of 3	Product	Yield of 4 (%) ^{b)}	
		$\mathbf{X} = \mathbf{I}$	X = Br	
1	Н	4a	98	
2	$4-OCH_3$	4b	98	99
3	$4-CH_3$	4c	98	99
4	3-CH ₃	4d	96	
5	$2-CH_3$	4e	84	
6	4-CN	4f	97	98
7	4-CO ₂ Et	4g	98	93
8	2-CO ₂ Et	4h	51	
9	4-Br	4i	96	

a) Organozinc bromide (**2**), prepared from ethyl 2-bromoacrylate (**1**, 3 mmol) and EGZn/Naph (6 mmol), in DMF was reacted at 70 °C with aryl iodides (**3**, X=I, 2 mmol) in the presence of 5 mol% Pd(P(*o*-Tol)₃)₂Cl₂. In the cross-coupling with aryl bromides (**3**, X=Br), the reaction was carried out in THF at refluxing temperature.

b) Isolated yields based on aryl halides employed.

Table 2. Synthesis of the Precursor of Anti-inflammatoryAgentsbyCross-couplingofOrganozincBromide2 with Aryl Iodides^{a)}

a) The reaction was carried out in the same way as that of the footnote a) of Table 1.

b) Isolated yields.

REFERENCES

- 1) Tokuda, M.; Mimura, N.; Karasawa, T.; Fujita, H. Suginome, H. *Tetrahedron Lett.* **1993**, *34*, 7607.
- Tokuda, M. "Novel Trends in Electroorganic Synthesis", ed. by S. Torii, Kodansha Ltd., Tokyo, 1995, p241.
- Tokuda, M.; Kurono, N.; Mimura, N. Chem. Lett., 1996, 1091.
- 4) Kurono, N.; Sugita, K.; Takasugi, S.; Tokuda, M. *Tetrahedron*, **1999**, *55*, 6097.
- Tokuda, M.; Kurono, N.; Takasugi, S.; Jalil, A. A. "New Directions in Organic Electrochemistry" ed. by Fry, A. J. and Matsumura, Y. The Electrochemical Society, **2000**, 80.