Performance of Li-Alloy/Ag₂CrO₄ Couples in Molten LiNO₃-KNO₃ Eutectic Electrolyte

Ronald A. Guidotti and Frederick W. Reinhardt Sandia National Laboratories Albuquerque, NM 87185-0614

There is interest in the development of a hightemperature power source that can be used to power data logging instrumentation while drilling in geothermal boreholes. Temperature can range from 250° C to well over 400°C in such an environment. To avoid the use of expensive dewar systems, the batteries must be able to function by using the ambient heat in the borehole. Typical electrolytes used in high-temperature (thermal) batteries are halide based with melting points between 313° and 436°C. There is a need to develop electrolytes with much lower melting points for this application. The melting points need to be even lower to function in oil and gas boreholes, where temperatures reach only 250° C or so.¹

As part of this effort, we have performed a number of compatibility studies with some of the more-promising electrolytes—both inorganic as well as organic.² In earlier work, we presented the results of characterization efforts with various electrochemical couples³ and, more specifically, with the Li(Si)/FeS₂ couple in a low-melting CsBr-based eutectic.⁴ The latter systems works fine above 250°C but experiences severe polarization due to higher internal impedance at lower temperatures.

In an attempt to extend the liquid region to lower temperatures, the use of lower-melting electrolytes was explored. One electrolyte that shows promise is the LiNO₃-KNO₃ eutectic that melts at 124.5°C. The use of high-activity anodes with this electrolyte is possible only due to the formation of a protective passive film if Li₂O on the anode, much in the same way that a film of LiCl prevents continued reaction of the anode in Li/SOCl₂ cells.

A considerable amount of work has been done by Miles in studying the basic electrochemistry of various materials in LiNO₃-KNO₃ eutectic.⁵ Giwa has also examined the Li(Al)/Ag₂CrO₄ couple with this electrolyte but over a narrow range of discharge conditions.^{6,7} In this work, we have extended the range of discharge conditions for this couple and Li(Si)/Ag₂CrO₄ included the and have Li(Si)/Ag₂CrO₄ couples as well. These materials were tested in single cells heated between platens at temperatures of 150° to 300°C at current densities of 8 - 32 mA/cm². This paper will report on the performance of these cells and will present preliminary data for 5-cell stacks tested in a simulated borehole environment.

References

1. Ronald A. Guidotti, *Proc.* 35th *IECEC Mtg.*, *Vol.* 2, 1276 (2000).

2. Ronald A. Guidotti and Frederick W. Reinhardt, *Proc.* 36th *IECEC*, Vol. 1, 905 (2001).

3. Ronald A. Guidotti and Frederick W. Reinhardt, *Proc.* 39th *Power Sources Conf.*, 470 (2000).

4. Ronald A. Guidotti and Frederick W. Reinhardt,

Proc. Intern. Symp. on Molten Salts, XII, Proc. Vol. 99-41, 701 (2000).

5. M. H. Miles, *Proc.* 39th *Power Sources Conf.*, 560 (2000) (and references therein)

6. C. O. Giwa, Proc. 35th Intern. Power Sources Symp., 215 (1992).

7. C. O. Giwa, Mat. Sci. Forum, 73-75, 699 (1991).