## In situ Raman Spectroscopic Study of Supported Molten Salt Catalysts During SO<sub>2</sub> Oxidation

I. Giakoumelou,<sup>1</sup> R. M. Caraba,<sup>2</sup> V. Parvulescu<sup>2</sup> and S. Boghosian<sup>1</sup>

<sup>1</sup>Department of Chemical Engineering, University of Patras and Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), GR-26500 Patras GREECE

<sup>2</sup>University of Bucharest, Department of Chemical Technology and Catalysis, Bucharest 70346, ROMANIA

The catalytic oxidation of  $SO_2$  to  $SO_3$  plays a key role in a number of industrial processes, which due to the associated sulfur oxide emissions have significant environmental impact. Although the main source of  $SO_2$ emissions to the atmosphere is the coal-fired power generation, large amounts of SO<sub>2</sub> are also emitted from sulfuric acid manufacturers and smelters of non-ferrous metals. Production of sulfuric acid is currently performed not only from traditional sulfuric acid manufacturers but also from NO<sub>x</sub> and SO<sub>x</sub> removal stations, combined with SCR technology like e.g. in the so-called Haldor-Topsoe SNOX process. The catalyst used for sulfuric acid production catalyzing the reaction SO\_2 +  $1\!\!/_2 O_2 \rightarrow$  SO\_3 contains its active phase in a molten salt, which is distributed in the pores of an inert silica support and is the most important supported-liquid-phase (SLP) catalyst. During SO<sub>2</sub> oxidation, large amounts of SO<sub>3</sub> are taken up by the catalyst, of which the active phase is best simulated by vanadium oxide dissolved in alkali pyrosulfate thereby giving rise to formation of vanadium oxosulfato real-time (1). In-situ complexes spectroscopic characterization of catalytic active centers in vanadium oxide based SO2 oxidation supported molten salt catalysts under gas and temperature conditions of practical importance has been a long-sought goal in catalysis (1).

In the present study, *in-situ* Raman spectroscopy at temperatures up to  $500^{\circ}$ C is used for the first time to identify vanadium species on the surface of a vanadium oxide based supported molten salt catalyst during SO<sub>2</sub> oxidation. Vanadia/silica catalysts impregnated with  $Cs_2SO_4$  were exposed to various  $SO_2/O_2/SO_3$  atmospheres and in situ Raman spectra were obtained and compared to Raman spectra of unsupported "model" V<sub>2</sub>O<sub>5</sub>-Cs<sub>2</sub>SO<sub>4</sub> and  $V_2O_5$ - $Cs_2S_2O_7$  molten salts. Figure 1 compares a representative in-situ Raman spectrum of a supported molten salt catalyst with the Raman spectrum of a V2O5- $Cs_2SO_4$  molten salt. The data indicate that the V<sup>V</sup> complex  $V^{v}O_{2}(SO_{4})_{2}^{3}$  [bands a-e, of which the most characteristic at 1034 cm<sup>-1</sup> (band b) due to v(V=O) and 940 cm<sup>-1</sup> (band c) due to sulfate] and Cs<sub>2</sub>SO<sub>4</sub> (bands A,B) dominate the catalyst surface after calcination (2). Upon admission of  $SO_3/O_2$  the excess sulfate is converted to pyrosulfate  $(SO_4^{2^-} + SO_3 \rightarrow S_2O_7^{2^-})$  and the  $V^V$  dimer  $(V^VO)_2O(SO_4)_4^{4^-}$  [with characteristic bands at 1046 cm<sup>-1</sup> due to v(V=O), 830 cm<sup>-1</sup> due to bridging S-O along S-O-V and  $770 \text{ cm}^{-1}$  due to V-O-V] is formed (3,4)

 $\begin{array}{ccc} V_2O_5+&2S_2O_7{}^{2-}{\rightarrow}\,(VO)_2O(SO_4)_4{}^{4-}\\ \mbox{Admission of $SO_2$ causes reduction of $V^V$ to $V^{IV}$ and to} \end{array}$  $V^{IV}$  precipitation below 420°C (4). Figure 2 shows the proposed structural models for the V species present in the liquid (molten) phase supported on the carrier.

## **ACKNOWLEDGEMENTS**

NATO's Scientific Affairs Division in the framework of the Science for Peace Programme (SfP 971984) has sponsored this research.

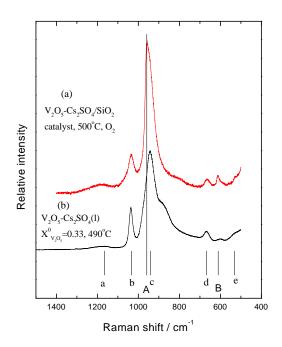



Figure 1. (a) In situ Raman spectrum of V<sub>2</sub>O<sub>5</sub>/SiO<sub>2</sub> (6.5 wt% V) impregnated with Cs<sub>2</sub>SO<sub>4</sub> (Cs:V=3:1) at 500°C under O2, calcined in the Raman furnace. Laser wavelength,  $\lambda_0 = 488.0$  nm; laser power, w = 60 mW; spectral slit width, sww = 8 cm<sup>-1</sup>; scan speed, ss = 0.2 cm<sup>-1</sup> s<sup>-1</sup>; time constant,  $\tau = 1$ s. (b) Raman spectrum V<sub>2</sub>O<sub>5</sub>-Cs<sub>2</sub>SO<sub>4</sub> molten mixture with  $X^0(V_2O_5)=0.33$  at 490°C.

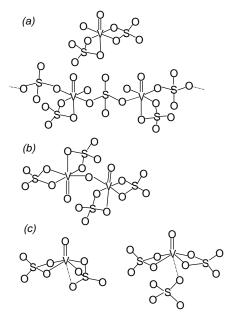



Figure 2. Possible molecular structural models for the V complexes present in the molten salt catalyst: (a)  $V^{V}O_{2}(SO_{4})_{2}^{3-}$  in monomeric and oligomeric form; (b);  $(V^{V}O)_{2}O(SO_{4})_{4}^{4-}$ ; and (c)  $V^{IV}O(SO_{4})_{2}^{2-}$  and  $V^{IV}O(SO_{4})_{3}^{4-}$ .

## REFERENCES

- 1. O. B. Lapina, B. S. Bal'zhinimaev, S. Boghosian, K. M. Eriksen and R. Fehrmann, Catal. Today 51, 469 (1999).
- 2. S. Boghosian, J. Chem. Soc., Faraday Trans. 94, 3463 (1998).
- 3. S. Boghosian, A. Chrissanthopoulos and R. Fehrmann, J. Phys. Chem. B (2002) in press.
- 4. I. Giakoumelou, R. M. Caraba, V. Parvulescu and
  - S. Boghosian, Catal. Lett. (2002) in press.