LOW-MELTING SALT MIXTURES DATA: ERRORS IN CONCENTRATION COORDINATES

Vasily I. Lutsyk Buryat Scientific Center, Russian Academy of Sciences; 8, Sakhyanova str., Ulan-Ude, 670047, RUSSIA; vluts@ofpsrv.bsc.buryatia.ru

Before to use in practice or to place in the data bank the information on the low-melting salt mixture coordinates one needs to evaluate the accuracy of these experimental results. A lot of invariant points coordinates in the multicomponent salt systems have been got with the help of the so-called projection method of the thermal analysis. It means to use the specially chosen vertical sections of the multidimensional phase diagrams and to fix there a direction for the next polythermal section or to find an invariant point projection as the cross-section of two originating segments of the ruled (hyper)surfaces. As a result a data evaluation means to estimate every time the errors of the used points concentration coordinates.

For the first time these ideas were formulated for the ternary systems [1] and checked mainly in molybdate and tungstate systems [2]. Later the same was made for the quaternary phase diagrams of different topological types [3-5].

In many cases all hypersurfaces of the multidimensional phase diagram may be depicted by one-dimensional linear contour and simulated as skewed hyperplanes of different types. When it is a diagram's ruled hypersurface, its generating simplex is parallel to diagram's base. When liquidus, solidus and solvus hypersurfaces were approximated, then generating simplex of skewed hyperplane wasn't horizontal.

In T-x-y-z diagrams two types of the skewed hyperplanes are used: with one-dimensional and with twodimensional generating simplexes. For the unruled hypersurfaces (like liquidus etc.) it is a six-power equation derived when one-dimensional simplex slides along two skewed planes of the four-dimensional space. The same equation (but with some zero coefficients) simulates the ruled hypersurface, generated by a horizontal segment of three-phase equilibrium in binary system. An equation of third power for

An equation of third power for skewed hyperplane with two-dimensional generating simplex and three directing lines simulates other type of ruled hypersurface produced by four-phase equilibrium in ternary system. Its xy-z projection resembles a trigonal prism or truncated pyramid with five faces.

Besides the invariant points coordinates evaluation as a polyhedron (hyper)volume of the same dimension as the concentration simplex, the additional recommendations have been formulated to get the more accurate data.

References

 V.I.Lutsyk. Analysis of the Ternary Systems Liquidus Surfaces. Moscow: Nauka Publishing House. 1987.
150 P. (In Russian).

2. M.V.Mohosoev, F.P.Alekseev, V.I.Lutsyk. Constitutional Diagrams of the Molybdate and Tungstate Systems. Novosibirsk: Nauka Publ. House. 1978. 319 P. (In Russian).

3. V.I.Lutsyk, V.P.Vorob'eva, O.G.Sumkina. Phase Diagrams of the Quaternary Systems Simulation. Novosibirsk: Nauka Publ. House. 1992. 198 P. (In Russian).

4. V.I.Lutsyk, V.P.Vorob'eva. Computer Construction of Heterogeneous Compositions in a Quaternary Eutectic System from Models of Liquidus Boundaries: Heterophase Fields and Their Representation on Vertical Sections //Russian Journal of Inorganic Chemistry. 1998, Vol. 43, No. 8, PP. 1241-1252.

5. V.I.Lutsyk, V.P.Vorob'eva, Sumkina O.G. Computer-Aided Design of the Quaternary Peritectic-Eutectical Systems with a Binary Incongruent Compound. Regularities of the Isobaric Diagrams Structure //Ibid. 2000, Vol. 45, No. 4, PP. 617-624.

Supported by the Russian Foundation for Basic Research Grant 01-03-32906.