Preparation and Electrochemical characteristics of Li[Ni_{0.5}Mn_{0.5}]O₂ using NaOH coprecipitation.

M.H. Lee^a, Y-K. Sun^{*a}, H.S. Kim^b, S.I. Moon^b

^aDepartment of Chemical Engineerng,

Hanyang University, Seoul 133-791, Korea

^bKorea Electrotechnolgy Research Institute,

Changwon 641-120, Korea

Introduction

The commercially Lithium ion batteries make use of layered $LiCoO_2$ cathode, but the high cost, toxicity is motivating low cost, non-toxicity cathode material. In this regard the layered $Li[Ni_{0.5}Mn_{0.5}]O_2$ has been attractive candidate for lithium ion battery and many researchers have reported electrochemical property and synthesis using manganese-nickel hydroxide [1-2].

Metal hydroxide for using NaOH coprecipitation have been applied in the alkaline rechargeable batteries and Li-ion batteries and used in points of low cost [3-4]. In this work, we have been researched manganese-based metal hydroxide precipitation in electrochemical properties, morphology and high-tap density for lithium ion battery.

Experimental

Manganese-nickel double hydroxide was prepared by feeding an aqueous solution of nickel and manganese sulfate, an aqueous solution of sodium hydroxide and an additive into a reactor under stirring in nitrogen atmosphere. The concentration, feed rate, temperature and pH of the mixture were all controlled. $(Ni_{0.5}Mn_{0.5})(OH)_2$ was extracted continuously from the reactor, then washed and dried at 110 °C without grinding. Nickel-manganese hydroxide had an average size of $10 \mu m$.

Li[Ni_{0.5}Mn_{0.5}]O₂ was prepared by using appropriate amounts of LiOHH₂O and manganese-nickel hydroxide. the mixed powder was preheated at 480°C for 10hr, calcined at 1000°C for 15hr and cooled slowly(2°C/min). Powder X-ray diffraction (Rigaku, Rint-2000) using CuK α radiation was used to identify the crystalline phase of the asprepared powders. Charge-discharge cycles were performed in CR2032 button type cells and used electrolyte was a 1:2 mixture of EC and DMC containing 1M LiPF₆ by volume

Result and discussion

Li[Ni_{0.5}Mn_{0.5}]O₂ has the α -NaFeO₂ structure with space group R3m, which is characteristic of the layered LiCoO₂ and LiNiO₂ structures. The lattice constants, *a* and *c* of Li[Ni_{0.5}Mn_{0.5}]O₂ calculated by rietveld refinement from the X-ray diffraction data is a = 2.8885Å, c = 14.2882Å, and c/a ratio is 4.947 in Fig 1. The Li[Ni_{0.5}Mn_{0.5}]O₂ electrode delivers a discharge capacity of 153 mA h g-1 between 2.8 and 4.3 V at current density of 0.2 mA cm⁻² (20 mA g⁻¹) in Fig 2.

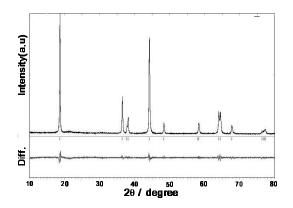


Fig 1. X-ray diffraction of the $Li/Li[Ni_{0.5}Mn_{0.5}]O_2$ powders and Rietveld refinement from the X-ray diffraction data

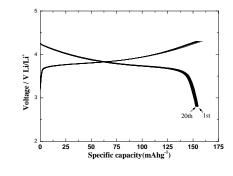


Fig 2. Charge-discharge curves of the Li/Li[Ni_{0.5}Mn_{0.5}]O_2 cell

at a current density of 0.2 mA $\rm cm^{-2}$ at 30 $\rm ^\circ\!C$.

References

T. Ohzuku and Y. Makimura, Chemistry Letters, 642, 744(2001).
Z. Lu, D.D. MacNeil, J.R. Dahn, Electrochem. Solid-state Lett 4, A191(2001).

[3] C. Yang, J. Hydrogen Energy. 27(10). (2002) 1071-1081.

[4] J. Ying , C. Wan, C. J. Power Sources 99 (2001) 78-84.