Influences of deposition condition on atomic scale friction of amorphous carbon thin film

<u>Myoung-Gyun Ko^a</u>, Hee-Soo Moon^b, You-Kee Lee^c, Jung-Yuel Kim^c and Jong-Wan Park^{a,b}

^aDepartment of Nano-structure Semiconductor Engineering, Hanyang University 17, Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea

^bDivision of Materials Science and Engineering, Hanyang University

17, Haengdang-Dong, Seongdong-Ku, Seoul 133-791, Korea

^cDepartment of Semiconductor Engineering Uiduk University

Kangdong, Kyongju 780-713, Korea

INTRODUCTIONS

In decade years, many researchers have studied about hydrogenated amorphous carbon (a-C:H) film. Because of advantage of their characteristic such as a chemical inertness, optical transparency, good thermal conductor and high mechanical hardness[1]. Especially, the atomic scale friction behavior of a-C:H thin film, deposited by ECRCVD (Electron Cyclotron Resonance Chemical Vapor Deposition), is influenced by their unique chemical composition, and low surface roughness. Also, Unlike diamond, which is a crystal of pure carbon with sp³ bonding, a-C:H films consist of small isolated sp² bonded clusters embedded in a partially hydrogenated random network of sp³ coordinated carbon.[2] The role of hydrogen on surface of a-C:H film has influence on their mechanical property and structure and the hydrogenated form of a-C:H thin films appears to have reached a maturity in understanding of its properties.[1] As already noted, the structure of a-C:H thin film has the unique chemical composition with sp² and sp³ bonding is necessary to understand atomic scale friction behaviors.

EXPERIMENTAL

a-C:H thin films were deposited using ECRCVD consisted of two chambers, a plasma generation chamber and a reaction chamber. Microwaves with 2.45 GHz frequency were introduced into the plasma generation chamber through a quartz bell jar. The substrates employed were B-doped p-type Si (100) wafer cleaned method of RCA. The a-C:H film was deposited at a pressure below 5×10^{-7} Torr. CH₄ gas was used as a carbon source gas and H2 gas was used as a precursor gas. Deposition is performed at a total pressure of varied from 7 to 38mTorr with CH₄ and H₂. The microwave power during the deposition was maintained at 500W. The CH₄/H₂ gas flow ratio was varied from 0.5 to 40.0, and the deposition temperature was R.T. After deposition perform in situ thermal treatment from 100 to 400°C. Fourier transform infrared (FTIR) spectroscopy was analysed to obtain bonding characteristics and determine sp^3 and sp^2 concentration ratios. Atomic scale friction behavior is analysed by lateral force microscopy (LFM) mode using micro-centilever. Hydrogen and carbon concentrations of a-C:H films were studied by X-ray photoelectron spectroscopy (XPS) and Rutherford spectrometer (RBS). backscattering Hydrogen concentration on surface of the a-C:H thin films is determined by RBS data simulation method.

RESULTS AND DISCUSSIONS

The mechanical and atomic scale frictional properties of hydrogenated amorphous carbon thin film is influenced with deposition condition. The different deposition condition of the a-C:H thin films have the different deconvolution of C-H stretch region and super-low roughness by thermal treatment temperature and gas flow ratio. Atomic scale friction also have different force according to sp^3/sp^2 ratios. Therefore, atomic scale

friction behavior is influenced on roughness and structure of the a-C:H thin film according to the different deposition conditions.

REFERENCES

- 1. A. Grill, Diamond Relat. Mater. 8 (1999) 428
- 2. Arup Gangopadhyay, Tribology Lett. 5 (1998) 25

3085 0 0 0 0 0 0 3036 0 14 10 16 15 2890-3000 5 10 30 17 13 2975 17 7 0 8 13 2965 43 32 5 0 0 2920 0 0 29 37 32 2820 0 0 0 0 0 2886 27 29 13 11 13 2865 8 8 13 11 14		(A) As- Dep.	(B) 100°C	(C) 200°C	(D) 300°C	(E) 400°C
3036 0 14 10 16 15 2905.0000 5 10 30 17 13 2975 17 7 0 8 13 2965 43 32 5 0 0 2920 0 0 29 37 32 2820 0 0 0 0 0 2865 27 29 13 11 13 2865 8 8 13 11 14	3085	0	0	0	0	0
2990.0000 6 10 30 17 13 2975 17 7 0 8 13 2976 43 32 6 0 0 2920 0 0 29 37 32 2920 0 0 0 0 0 2820 0 0 0 0 0 2886 27 29 13 11 13 2866 8 8 13 14 14	3035	0	14	10	16	15
2975 17 7 0 8 13 2966 43 32 5 0 0 2820 0 0 29 37 32 2920 0 0 0 0 0 2886 27 29 13 11 13 2866 8 8 13 11 14	2990- 3000	5	10	30	17	13
2956 43 32 5 0 0 2920 0 0 29 37 32 2920 0 0 0 0 0 2866 27 29 13 11 13 2865 8 8 13 11 14	2975	17	7	0	8	13
2920 0 0 29 37 32 2820 0 0 0 0 0 2 2886 27 29 13 11 13 2 365 8 8 13 11 14	2955	43	32	5	0	0
2920 0	2920	0	0	29	37	32
2886 27 29 13 11 13 13 2865 8 8 13 11 14	2920	0	0	0	0	0
2866 8 8 13 11 14	2885	27	29	13	11	13
	2855	8	8	13	11	14
SP ₃ /SP ₂ 0.78 0.69 0.60 0.59 0.6	SP3/ SP2	0.78	0.69	0.60	0.59	0.59