Microemulsion Synthesis of Tin oxide–Graphite Nanocomposites as Li-ion Battery Anodes

Y. Wang, J. Y. Lee, B. H. Chen Department of Chemical and Environmental Engineering National University of Singapore 10 Kent Ridge Cresent, 119260, Singapore (e-mail:cheleejy@nus.edu.sg)

Introduction

Sn-based Li storage materials are most noted for their high specific capacities either on the weight or volume basis. However, the large volume expansion and contraction problem in cycling is the major cause of material failure in applications. [1-2] Recent work has shown that a uniform dispersion of SnO_2 on carbonaceous materials can reduce the rapid capacity fading to some extent.[3] Here we report the synthesis of nanoscale SnO_2 -graphite composites using a reverse microemulsion method and Tergitol 15-S-5 as the surfactant; followed by the evaluation of their electrochemical properties of interest to Li ion battery applications.

Experimental

Two water-in-oil reverse microemulsions using heptane as the oil phase and Tergitol 15-S-5 as the surfactant, were prepared. SnCl₄ and NH₄OH were dissolved in the aqueous phase of microemulsion 1 and microemulsion 2 respectively. The two microemulsions, and graphite powder were then mixed together and stirred. SnO₂graphite composites were obtained after the mixture was evaporated to dryness and calcined at 600°C. 80 wt% of the composite, 10 wt% each of carbon black and polyvinylidene fluoride were used to formulate the working electrodes in two-electrode Li test cells. All cells were charged and discharged at 0.4 mA/cm² between 2V and 5mV on a Maccor Series 2000 battery tester.

Results and discussion

The particle size of the as-synthesized hydrous SnO₂ was between 15 and 20nm as shown in the TEM image of Fig. 1. Fig 1 also includes the SEM image of a composite containing 16.5wt% SnO₂ and shows that the SnO₂ nanoparticles were fairly uniformly distributed on the graphite surface. The electrochemical performance of pristine SnO₂ and three microemulsion-derived SnO₂graphite composites (4.0wt%, 9.8 wt% and 16.5wt% of SnO_2 respectively) are compared in Fig. 2. For the composites with 4.0wt% and 9.8wt% of SnO₂, the first cycle specific capacities of 342 mAh/g and 384 mAh/g respectively only decreased by about 4% in 30 cycles. Although the 16.5 wt% SnO₂ sample had the highest specific capacity (428 mAh /g), it also exhibited more pronounced capacity fading with 10% of the initial capacity lost in 30 cycles. There were therefore increasing ease and extent of SnO₂ agglomeration in composites higher in tin oxide contents.

References

- Y. Idota, A. Matsufuji, Y. mackawa, and T.Miyasaki, Science, 276, 1395 (1997).
- [2] I. A. Courtney, W. R. McKinnon, and J. R. Dahn, J. Electrochem. Soc, 146, 59 (1999).
- [3] J. Y. Lee, R. F. Zhang, and Z. L. Liu, Electrochem. Solid-State lett, **3**, 167 (2000).

Fig.1 TEM image of (A) SnO₂ and SEM image of (B) composites (SnO₂ 16.5wt%)

Fig.2 Cyclability of SnO₂ and various nanocomposites