Nanostructured Ta-Si-N Thin Films as Diffusion Barriers Between Cu and SiO₂

L. W. Lai, C. C. Chang and J. S. Chen Department of Materials Science and Engineering National Cheng Kung University Tainan, Taiwan Y. K. Lin Nuclear Science Technology Development Center National Tsing Hua University

Hsinchu, Taiwan

In order to reduce the RC delay of interconnects in integrated circuits, copper has replaced aluminum as the conducting material for sub-0.15 μ m integrated circuits owing to its lower resistivity. However, copper exhibits a substantial diffusivity in SiO₂. Therefore, a stable barrier is necessary to prevent the undesired diffusion between Cu and the SiO₂ dielectrics. Many materials have been investigated as diffusion barriers for Cu metallizations. Among them, Ta-Si-N alloys have shown superior performances. In this work, the thermal stability and interdiffusion behavior of three Cu/Ta-Si-N/SiO₂ systems with various compositions for the Ta-Si-N barriers are studied in parallel and their differences will be explored.

Ta-Si-N barriers of different compositions, 50 nm in thickness, were deposited on SiO₂ (280 nm) covered Si wafers by co-sputtering. Between Ta-Si-N and SiO₂, a thin Ta interlayer was interposed to improve the adhesion. Compositions of Ta-Si-N films were determined by Rutherford backscattering spectrometry (RBS). Cu films (200 nm) were then sputtered on Ta-Si-N. After deposition, Cu/Ta-Si-N/Ta/SiO₂ samples were annealed in vacuum $(2\times10^{-5} \text{ Torr})$ at temperature ranging from 500 to 900°C for 30 min. The crystalline structure and elemental depth distribution of all samples (before after annealing) were investigated by using glancing incident angle X-ray diffraction (GIAXRD) and RBS, respectively.

Table 1 shows the composition, average grain size (estimated from the FWHM of the X-ray diffraction peak), resistivity and crystallization temperature of three Ta-Si-N films (denoted as "A", "B" and "C"). The high Si content in film C results in the smallest grain size and high resistivity. However, the crystallization temperature of film B is higher than that of A and C films.

Fig. 1 shows the sheet resistances of Cu/Ta-Si-N(A, B, C)/Ta/SiO₂ samples as a function of annealing temperature. It is clear that sample with barrier C shows the least stable sheet resistance upon annealing. The GIAXRD spectra of three Cu/Ta-Si-N/Ta/SiO₂ samples after annealing at 800°C are shown in Fig. 2. Diffraction peaks other than Cu peaks are seen in the sample with barrier A. Those are diffraction peaks of Ta_2N phase. Some small diffraction peaks, which are associated with TaSi_x phase, are also observed in the sample with barrier C. GIAXRD spectra of 900°C annealed Cu/Ta-Si-N/Ta/ SiO₂ samples indicate that all three Ta-Si-N barriers are crystallized after annealing at 900°C.Therefore, with the Cu overlayer, Ta-Si-N films crystallize at lower temperatures as compared to the films without the Cu overlaver.

Fig. 3 shows the RBS spectra of the Cu/Ta-Si-N(C) /Ta/SiO₂ ample, as deposited and after annealing at 800°C. From the spectra, one can see that both Ta and Si in the Ta-Si-N barrier had diffused across the Cu layer, to the sample surface after annealing at 800°C. Also, the tail of the Cu profile indicates that Cu atoms had diffused into the barrier layer. In contrast, the Cu/Ta-Si-N/Ta/SiO₂ multilayer structures with barriers A and B did not show

such interdiffusion after annealing at 800° C. The increase of sheet resistance of Cu/Ta-Si-N(C)/Ta/SiO₂ upon annealing thus should be attributed to the interdiffusion between Ta-Si-N(C) and Cu.

From the experiment results, one can find that the stability of Ta-Si-N barrier is strongly dependent on its composition. The composition should relate with the chemical bonding configurations so that the thermal stability of Ta-Si-N is affected. The original grain size and crystallization temperature of the Ta-Si-N layer may also relate with the composition, but they will not be the major factors to determine its barrier performance.

Table 1 Composition, average grain size, resistivity and crystallization temperature of three Ta-Si-N films.

Sample	Ta:Si:N	Average	Resistivity	Crystallization
		grain size	(µΩ-cm)	temperature
Α	53: 3:44	2 nm	261	900 °C
В	53:11:36	1.5 nm	259	1000 °C
С	29:32:39	1 nm	1046	900 °C

Fig. 1 Dependence of sheet resistance of Cu/Ta-Si-N/Ta/SiO₂ samples on the annealing temperatures.

Fig. 3 RBS spectra of the Cu/Ta-Si-N(C)/Ta/SiO₂ sample, as deposited and after annealing at 800° C.