Hydrophilicity as a strategy to enhance the sensitization of nanostructured films by chemical bath deposition.

M.E. Rincón*, M.C. Arenas-Arrocena, A. Jiménez Centro de Investigación en Energía, UNAM Priv. Xochicalco S/N, Temixco, Morelos 62580, México; e-mail: merg@cie.unam.mx Tel: +52-55 5622 9748, FAX: +52 55 5622 9742.

The sensitization of titanium dioxide with organic dyes or narrow-band gap semiconductors has been explored extensively in photoelectrochemical cells [1-3]. Other applications regarding TiO_2 are based on the high versatility of its surface properties. Particularly, the hydrophilicity of TiO_2 under UV illumination, reported by Wang et.al. [4], have been used in many practical applications. In this work, we explore the hydrophilicity of TiO_2 as a tool to control the growth and properties of sensitizing films obtained by chemical bath deposition.

We report the structural, optical and electrical characterization of Bi_2S_3 films grown by chemical bath deposition onto hydrophobic/hydrophilic TiO₂ obtained by sol-gel techniques and UV-irradiation treatments. Important differences were found, which can be explained in terms of TiO₂ dissolution in alkaline media and surface coverage by Bi_2S_3 . The last is strongly related to the hydrophilic character of the porous matrix at intermediate deposition kinetics, but becomes less relevant in photo accelerated chemical baths.

Acknowledgement

The authors thank CONACyT-México for financial support.

References

- 1. B. O'Regan, M. Grätzel, Nature 353 (1991) 373.
- A. Ennaoui, S. Fiechter, H. Tributsch, M. Giersig, R. Vogel, H. Weller, J. Electrochem. Soc. 139 (1992) 2514.
- M.E. Rincón, A. Jiménez, A. Orihuela, G. Martínez, Solar Energy Materials and Solar Cells 70 (2001) 163.
- R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature 388 (1997) 431.