Saturation Current Model for the N-channel G⁴-FET

B. Dufrene¹, B. Blalock¹, S. Cristoloveanu², M. Mojarradi³, and E. A. Kolawa³

 ¹ Department of Electrical and Computer Engineering, The University of Tennessee, Knoxville, TN, USA
²IIMEP, ENSERG, BP 257, BP 257, Grenoble, France
³Jet Propulsion Laboratory, Pasadena, CA, USA

Abstract — A new saturation current model is presented for the n-channel G⁴-FET, a novel 4-gate transistor [1-2]. The model is verified against measurement results from G⁴-FETs fabricated using a commercially available 0.35-micron partially-depleted SOI process. A 3dimensional illustration of the G⁴-FET is shown in *Figure* 1. Since the G^4 -FET is an accumulation-mode device, the conventional first-order JFET model [3] provides the basis for the G⁴-FET saturation current model. The JFET model's gate-to-source voltage is replaced by V_{JG} , the bias voltage applied to the G⁴-FET's junction (or lateral) gates. Then, to include the additional gate bias effects exhibited by the G⁴-FET's saturation I-V characteristics, the new model develops hierarchical equations for the JFET zero-bias saturation current parameter, I_{DO} , and the pinch-off voltage, V_P .

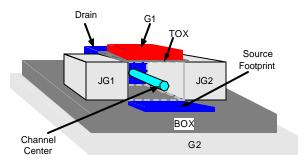
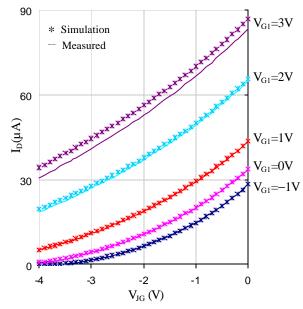



Figure 1. 3-dimensional illustration of the G⁴-FET.

Parameter values for the new model were extracted using curve-fitting techniques. A plot of simulation (using the new model with extracted parameter values) versus measured I-V characteristics for a $0.4\mu m/0.9\mu m$ n-channel G⁴-FET is provided in *Figure 2* for five different top-gate (V_{G1}) bias conditions. The new model achieves very good accuracy for top-gate bias conditions ranging from depletion to weak accumulation. These and other systematic experiments confirm the model. A complete description of the model, along with verification, will be provided in the full paper.

Figure2. I_D vs. V_{JG} curves for measured and simulated 0.4 μ m/0.9 μ m n-channel G⁴-FET (V_{DS}=4.0V).

References

- B.J. Blalock, S. Cristoloveanu, B.M. Dufrene, F. Allibert, and M.M. Mojarradi, "The Multiple-Gate MOS-JFET Transistor," accepted for publication in the International Journal of High Speed Electronics and Systems, 2002.
- [2] S. Cristoloveanu, B. Blalock, F. Allibert, B. M. Dufrene, and M. M. Mojarradi, "The Four-Gate Transis tor," to appear in the 2002 Proc. of the European Solid-State Device Research Conf.
- [3] G.W.Neudeck and R. F. Pierret, Field Effect Devices, Second Edition, Addison-Wesley, Massachusetts, 1990, pp.16-22.