Growth of nano-structured TiO₂-doped LiCoO₂ PLD films and their structural and optical properties

O.M. Hussain^a, M.C. Rao^a, and C.M. Julien^b ^aThin Film Laboratory, Department of Physics S.V. University, Tirupati 517502, India ^bLMDH, UMR 7603, Université Pierre et Marie Curie 4 place Jussieu, 75252 Paris cedex 05, France

Due in large part to its high energy storage capacity, $LiCoO_2$ is the prototypical positive electrode material for Li-ion batteries. The increasing interest of $LiCoO_2$ thin films comes from both the technological application in all-solid-state micro-batteries and the fundamental studies of lithium intercalation process.

LiCoO₂ films doped with 10%TiO₂ were grown on various substrate materials using the pulsed laser deposition (PLD) technique from target sintered at 850°C. Films were deposited over the substrate temperature range $500^{\circ}C \le T_s \le 700^{\circ}C$ and in the oxygen partial pressure range 100 mTorr $\le P(O_2) \le 200$ mTorr. PLD films were subsequently characterized with respect to their composition (RBS analysis), their structure (XRD, Raman and FTIR spectroscopy) and their morphology (AFM).

XRD patterns show that LiCoO₂ films deposited on silicon substrate have a preferred (003) orientation. The structure corresponds to that of the rhombohedral α -NaFeO₂-type (R-3m S.G.).

AFM studies reveal the nano-structured morphology of the films (Fig. 1). $LiCoO_2$ PLD films grown at Ts=600°C are well textured. The influence of TiO₂ doping on particle size and morphologies has been clearly evidenced.

FTIR absorption spectra indicate the layered local structure related to the short-range environment of oxygen coordination around the cations in oxide lattice. The presence of Li ions in octahedral *3b* sites is evidenced by the low-wavenumber band at ca. 250 cm⁻¹, which is attributed to the asymmetric stretching mode of octahedral LiO₆ units (Fig. 2). The Raman scattering (RS) spectra show the characteristic features at ca. 485 and 595 cm⁻¹ as expected for layered LiCoO₂. However, additional peaks attributed to the presence of Co₃O₄ impurities are observed in RS spectra of PLD films grown at low temperature (Ts=500°C, P(O₂)=100 mTorr).

FIG. 2.

Optical absorption was studied in the visible region to determine transitions associated with the peak energy of the density of states for the conduction band. A prominent fundamental absorption was observed at 2.3 eV above the Fermi level which is attributed to the $d\rightarrow d$ transition from E_F in the Co(t_{2g}) band to the Co(e_g) in LiCoO₂. The energy of this transition appears to be sensitive to the crystallinity of the film.