STRUCTURAL AND PHYSICAL PROPERTIES OF $T^{#2}$ -Li_{2/3}[Co_{2/3}Mn_{1/3}]O₂ UPON CYCLING.

<u>F. Tournadre</u>^a, L. Croguennec^a, I. Saadoune^b, M. Ménétrier^a, M. Morcrette^c, P. Willmann^d and C. Delmas^a

^a Institut de Chimie de la Matière Condensée de Bordeaux-CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, Université Bordeaux I, 87 Av. du Dr A. Schweitzer, 33608 Pessac cedex, France

^b Département de Chimie, Faculté des Sciences et Techniques, Av. Abdelkrim El Khattabi, B.P. 618, 40000 Marrakech, Morocco

^c Laboratoire de Réactivité et Chimie des Solides, Université Picardie Jules Verne, 33 Rue Saint Leu, 80000 Amiens, France

^d Centre National d'Etudes Spatiales, 18 Av. Edouard Belin, 31401 Toulouse cedex 4, France

In the last few years, the layered $LiMO_2$ materials obtained by Li-ion exchange in P2 sodium phases, such as $T^{\#}2$ - $Li_{2/3}[Ni_{1/3}Mn_{2/3}]O_2$ and O2- $LiCoO_2$, were shown to be interesting as positive electrodes materials for Li-ion batteries¹⁻². The behavior of the metastable phase $T^{\#}2$ - $Li_{2/3}[Co_{2/3}Mn_{1/3}]O_2$ recently prepared³ by Li/Na ionic exchange in molten salts is presented in this paper.

The galvanostatic curve of the Li//Lix[Co2/3Mn1/3]O2 cell given in Fig. 1 exhibits two domains: the first one (around 4.3 V) corresponds to the lithium composition range $0 < x \le 0.67$ and to the Co⁴⁺/Co³⁺ redox couple; the second one (around 2.6 V) corresponds to the lithium composition range $0.67 < x \le 1$ and to the Mn^{4+}/Mn^{3+} redox couple. The first cycle capacity is 150 mAhg⁻¹ between 3.5 V and 4.7 V, it corresponds to deintercalation of almost all lithium ions. During the first cycle, several phase transitions occur. The different phases have been characterized ex-situ and in-situ by XRD. Fig. 2 presents a part of the in-situ diffraction patterns (enlargement of the first (001) peaks). Upon charge (i.e. for $0 < x \le 0.67$), the evolution of the phase diagram is very close to that obtained for the O2-LiCoO₂ system⁴, the different domains are:

- $T^{\#}2$ -Li_xCo_{2/3}Mn_{1/3}O₂ single phase domain for 0.46 < x \leq 0.67,
- 4.3 V voltage plateau resulting from the existence of a biphased domain assigned to the $T^{\#}2 \rightarrow O6_1$ transformation for 0.39 < x ≤ 0.46,
- $O6_1$ -Li_xCo_{2/3}Mn_{1/3}O₂ single phase domain for $0.22 < x \le 0.39$,
- 4.6 V voltage plateau resulting from the existence of a biphased domain assigned to the $O6_1 \rightarrow O2$ transformation for $0.18 < x \le 0.22$,
- O2-Li_xCo_{2/3}Mn_{1/3}O₂ single phase domain for $x \le 0.18$.

Upon discharge a small $T^{\#}2 \rightarrow O6_2$ biphased domain is observed for $0.67 < x \le 0.71$ and then, an $O6_2$ -Li_xCo_{2/3}Mn_{1/3}O_2 single phase domain for 0.71 < x. Cycling in the 3.5 V < V ≤ 2.5 V potential domain, which is corresponding to the presence of trivalent manganese ions in the structure, induces an irreversible phase transition: the $T^{\#}2$ domain disappears and Li_x[Co_{2/3}Mn_{1/3}]O_2 exhibits an O6-type structure for $0.21 < x \le 1$.

Combination of XRD, conductivity and NMR measurements are in progress in order to investigate the evolution of the structural and physical properties upon

lithium deintercalation.

Acknowledgements

The authors thank CNES and Région Aquitaine for financial support.

References:

- [1] J. M. Paulsen, C. L. Thomas and J.R. Dahn,
- J. Electrochem. Soc., <u>147</u>(3), 2000, 861
- [2] J. M. Paulsen, J.R. Mueller-Neuhaus and J.R. Dahn, J. Electrochem. Soc., <u>147</u>(2), 2000, 508
- [3] Z. Lu, R. A. Donaberger, C. L. Thomas and J.R. Dahn, J. Electrochem. Soc., <u>149</u>(8), 2002, A1083
- [4] D. Carlier, I. Saadoune, M. Ménétrier and C. Delmas, J. Electrochem. Soc., <u>149(</u>10),2002, A1310

Fig. 1: First galvanostatic curve of $Li//Li_x[Co_{2/3}Mn_{1/3}]O_2$ cell obtained at C/20 current density rate.

Fig. 2: First Bragg reflections recorded during the first cycle of $Li//Li_x[Co_{2/3}Mn_{1/3}]O_2$ cells. An XRD pattern is recorded every $\Delta x = 0.05$