Electrodeposition of WO₃ Thin Films

Thierry Pauporté

^aLECA, UMR-CNRS 7575 École Nationale Supérieure de Chimie de Paris

> 11 rue Pierre et Marie Curie 75231 Paris cedex 05, France pauporte@ext.jussieu.fr

Cathodic electrodeposition is a promising alternative route for electrochromic WO_3 thin film deposition. Unfortunately, the methods reported in the literature are very time consuming and the precursor solution used is poorly stable.

We present a new, simple and fast method for preparing the deposition solution [1]. The starting tungsten species is a salt, Na₂WO₄, which is mixed to H₂O₂ prior to be acidified at pH 1.2 by perchloric acid addition. This solution is remarkably stable. The films are deposited between 0.06 and 0.34 V versus NHE at room temperature. They are smooth and well-covering. They are amorphous by X-ray diffraction study. Voltammograms typical of WO₃ amorphous films have been recorded in H2SO4 and LiClO₄-PC. The coloration efficiencies measured at a wavelength of 633 nm for H⁺ and Li⁺ intercalation range between 62 and 66 cm².C⁻¹ and are similar to the results obtained with evaporated films.

The deposition process has been studied by X-ray absorption spectroscopy from a high intensity synchrotron source (ESRF-Grenoble). A large variety of samples (summarized in table 1), from the deposition solution to crystallised WO3 and electrodeposited WO₃ thin film cycled or not LiClO₄-PC medium have investigated. It appears that the condensation process can be followed by means of the white line height (WLH) of the tungsten L₃ absorption edge. We propose an arbitrary scale reflecting this parameter and which gives rise to a linear relationship with the WHL (Fig.1). The XANES results have been correlated with Raman and EXAFS analysis which shows in particular dramatic structural changes in the electrodeposited WO₃ films induced by the first cyclings in LiClO₄-PC medium.

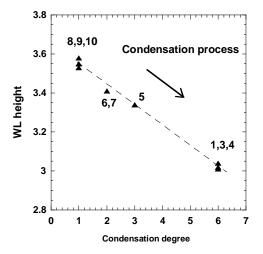

[1] Th. Pauporté, *J. Electrochem. Soc.*, **149**, C539-545 (2002).

Table 1: Set of samples investigated.

Sample	N°	Condensation	W L ₃
		degree ^a	WL heigth
- WO ₃ crystallized	1		3.04
- ed-WO ₃ ^b cycled in Li-PC	3	6	3.01
- spWO ₃ ^c cycled in Li-PC	4		3.02
- Aged deposition solution	5	3	3.34
- ed- WO ₃ ^b .	6	2	3.41
- spWO ₃ ^c	7		3.41
- solubilized Na ₂ WO ₄ .	8		3.58
- fresh deposition solution	9	1	3.53
- deposition sol. stored 2	10		3.55
days			

^a Scale arbitrarily set from 1 to 6

^b Electrodeposited film, ^c film deposited by sputtering.

Figure 1: Variation of the white line height of the W L_3 edge with the condensation processes induced electrochemically (label: sample N°).