Photochromic properties of double layer CdS/MoO₃ thin films

O.M. Hussain¹, K. S. Rao¹, K.V. Madhuri¹, S. Uthanna¹ and C. Julien² ¹Thin Film Laboratory, Department of Physics, Sri Venkateswara University, Tirupati 517 502, India ²Laboratoire des Milieux Désordonnés et Hétérogènes, UMR-CNRS 7603, Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France

The sub-stoichiometric molybdenum trioxide (layered α -MoO₃) thin films are photochromic and thermochromic and have vide applications in optical data storage and display systems. The optical absorption in these films is caused by the small-poloron hopping between two non-equivalent sites of molybdenum Mo⁵⁺ and Mo⁶⁺.

The double layer CdS/MoO₃ systems were deposited by sequential evaporation of CdS (thermal evaporation) and MoO₃ (activated reactive evaporation) films on well-cleaned Pyrex glass substrates. The photochromic properties were studied in the spectral range 300 to 1500 nm by illuminating with a 100 W tungsten lamp at various irradiation times. The photochromic behavior was observed of both CdS/MoO₃ and In:CdS/MoO₃ deposited on glass to compare these double layer systems.

The irradiation produced free electrons which are trapped by anion (oxygen) vacancies by forming colour centers. The evaluated maximum colour center concentration was 1.6×10^{17} /cm³ at a threshold time of 40 minutes. The photochromic behavior and hence the color centre concentration was increased by forming a double layer glass/CdS/MoO3 system in which CdS and In:CdS were used as interlayer, because of the semiconducting and photosensitive characteristics of CdS. The color center concentration was found to be higher in glass/In:CdS/MoO $_3$ than the $glass/MoO_3$ and $glass/CdS/\ MoO_3$ systems. The driving force for electron transfer between CdS and MoO₃ is the relative energy difference between the conduction band of the two semiconductors. The conduction band of CdS is more negative than that of MoO₃. Hence the bottom of the conduction band for MoO_3 is lower than that of CdS favoring electron injection from photoexicited CdS to MoO3 as shown in Fig. 1.

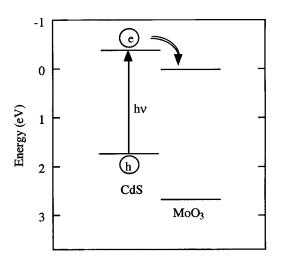


FIG. 1. Energy diagram for the CdS/MoO_3 double-layer system.