ELECTRON TRANSFER REDUCTION OF FLUOROFULLERENES, C₆₀F₃₆ AND C₆₀F₁₈

<u>Kei Ohkubo</u>,^a Roger Taylor,^{*b} Olga V. Boltalina,^c and Shunichi Fukuzumi^{*a}

^a Department of Material and Life Science, Graduate School of Engineering, Osaka University, CREST, Japan Science and Technology Corporation, Suita, Osaka 565-0871, Japan

 ^b School of Chemistry, Physics & Environmental Sciences, Sussex University, UK BN1 9QJ, UK
^c Chemistry Department, Moscow State University, Moscow, 119899, Russia

> ookubo@chem.eng.osaka-u.ac.jp R.Taylor@sussex.ac.uk ovbolt@lamar.colostate.edu fukuzumi@chem.eng.osaka-u.ac.jp

Fluorofullerenes, $C_{60}F_{36}$ and $C_{60}F_{18}$, have unique structures identified by X-ray analyses, which have revealed the presence of three/four and one π -delocalized benzenoid rings, respectively.^{1,2} These fullerenes are strong oxidants as compared to C_{60} due to strongly electron-deficient fluorines. Halogenated fullerenes such as $C_{60}Cl_6$, $C_{60}Br_6$ and $C_{60}Br_8$ are known to form chargetransfer complexes with organic donors and it is anticipated that increased electron withdrawal by the halogenated cage would increase electron-transfer reduction. We have recently reported electron transfer reduction mechanism and one-electron reduction potential of $C_{60}F_{18}$.³ However, the electron transfer reactivity of the stronger oxidant, $C_{60}F_{36}$, has yet to be reported.

We report herein the electron transfer reduction mechanism and the reactivity of the electron transfer reduction of three isomers of $C_{60}F_{36}$ (*T*, *C*₁ and *C*₃) in comparison with that of $C_{60}F_{18}$.

Upon mixing a dichloromethane (CH₂Cl₂) solution of $C_{60}F_{36}$ (C_3) with decamethylferrocene (Fc^{*}) at -80 °C, the new absorption band due to $C_{60}F_{36}$ appeared at 685 nm immediately, accompanied by the formation of Fc^{*+} at 790 nm. The absorbance at 685 nm disappeared gradually, accompanied by appearance of a new absorption band at 630 nm and further increase in absorbance at 790 nm. This indicates that an electron transfer from Fc^{*} to $C_{60}F_{36}$ is followed by defluorination from $C_{60}F_{36}$ to give $C_{60}F_{35}$.

which is further reduced by Fc^* to yield $C_{60}F_{35}^-$ (630 nm) as the final reduced product as shown in Scheme 1.

The electron-transfer reduction of $C_{60}F_{36}$ (C₃) was also achieved by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide [(BNA)₂] to $C_{60}F_{36}$ in PhCN. The (BNA)₂ is known to act as a unique electron donor to produce the radical anions of electron acceptors. Under photoirradiation of a benzonitrile (PhCN) solution of $(BNA)_2$ and $C_{60}F_{36}$, $C_{60}F_{36}$ ⁻ is detected by ESR as shown in Figure 1. The g value of the isotropic ESR signal due to $C_{60}F_{36}$ is 2.0010 which is slightly larger than the g value of $C_{60}F_{18}$ (2.0005). The smaller g value being smaller than the free spin value (2.0023) is characteristic of the ESR spectra of C_{60}^{\bullet} and the functionalized C_{60}^{\bullet} . Hyperfine splitting due to fluorine atoms of $C_{60}F_{18}$ is observed in Figure 1. This indicates that the unpaired electron is delocalized on fluorine atoms in $C_{60}F_{36}$. An electron is initially added on the fullerene π -electron system and then intramolecular electron transfer occurs to the antibonding C–F σ^* orbital, resulting in the cleavage of the C-F bond. Upon cutting off the light, the ESR signal disappears due to the C-F bond cleavage disappears.

The detailed comparison of the electron-transfer reactivities and the stabilities of the radical anions of three isomers of $C_{60}F_{36}$ with those of $C_{60}F_{18}$ will be reported.

Figure 1. ESR spectrum of $C_{60}F_{36}$ - (C_3) generated by photoinduced electron transfer from (BNA)₂ (1.0 x 10⁻³ M) to $C_{60}F_{36}$ (C_3 , 2.5 x 10⁻⁴ M) with a high-pressure Hg lamp in deaerated PhCN at 278 K. * denotes an Mn²⁺ marker.

References

- Hitchcock, P. B.; Taylor, R. *Chem. Commun.*, 2002, 2078-2079; Avent, A. G.; Clare, B. W.; Hitchcock, P. B.; Kepert, D. L.; Taylor, R. *Chem. Commun.* 2002, 2370-2371.
- [2] Neretin, I. S.; Lyssenko, K. A.; Antipin, M. Y.; Slovokhotov, Y. L.; Boltalina, O. V.; Troshin, P. A.; Lukonin, A. Y.; Sidorov, L. N.; Taylor, R. Angew. Chem. Int. Ed. 2002, 39, 3273-3276.
- [3] Ohkubo, K.; Taylor, R.; Boltalina, O. V.; Ogo, S.; Fukuzumi, S. Chem. Commun. 2002, 1952-1953.