Charge Transfer at Carbon Nanotubes with Encapsulated C_{60}/C_{70} (Peapods)

Ladislav Kavan ^{a,b} Lothar Dunsch ^a and Hiromichi Kataura^c

^aInstitute of Solid State and Materials Research, Helmholtztstr. 20, D - 01069 Dresden, Germany ^bJ. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-182 23 Prague 8, Czech Republic ^cDepartment of Physics, Tokyo Metropolitan University, 1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan

Charger-transfer on fullerene peapods (C_{60} @SWCNT¹ and C_{70} @SWCNT) was studied by electrochemistry in 0.2 M LiClO₄ + acetonitrile. This strategy allows easy and precise control of the population of electronic states between about \pm 1.5 eV *vs*. the Fermi level¹⁻³. As both the individual components of peapods, i.e. SWCNT and C_{60}/C_{70} , show specific redox response, there is a clear challenge of addressing fundamental problems of charge transfer in nanocarbons.

Electrochemistry of peapods is dominated by capacitive double-layer charging, analogous to that of empty tubes $(SWCNT)^{2,3}$. The reduction of intra-tubular C_{60}/C_{70} is hampered; hence, no fullerene-related faradaic processes are detectable.

Vis-NIR spectroelectrochemistry points at reversible and fast bleaching of the electronic transitions between Van Hove singularities^{2,3}, which also causes reversible quenching of resonance Raman scattering of both radial breathing (RBM) and tangential (TM) modes of SWCNT^{2,3}. Cathodic charging of C_{60} @SWCNT leads to bleaching of the C_{60} Raman modes, but this effect is, surprisingly, not mirrored upon anodic charging (Fig. 1). The electrochemical charging influences preferentially the peapod wall, causing the depletion/filling of states close to the Fermi level of SWCNT. This manifests itself by symmetric anodic/cathodic bleaching of the RBM/TM modes and the corresponding frequency shifts.

The asymmetric response of C_{60} -peas is caused by the fact that the Fermi level of SWCNT is close to LUMO of C_{60} (t_{1u}) . For cathodic polarization, electrons are transferred from the wall to the LUMO of C_{60} -peas. Hence, the HOMO-LUMO transition C_{60} -peas is suppressed, and the resonance Raman scattering is quenched too. However, the anodic depletion of valence band does not influence the electronic transitions of C_{60} -peas. Consequently, the excitation of C_{60} -peas is allowed at all potentials above the Fermi level. As the tube-related modes decline monotonously upon both cathodic and anodic charging, the strongest C_{60} -related mode, $A_g(2)$ becomes dominant over the tube-related modes at highly positive potentials. Anodic charging also allows a disclosure of the $H_g(8)$ line, due to the frequency up-shift of the TM mode. This is interesting, since the $H_g(8)$ mode cannot be observed in dry peapod, due to overlap with strong TM features. The $C_{70}@SWCNT$ exhibits qualitatively different behavior. The most striking feature is, that the "anodic enhancement" of Raman scattering from C_{60} -peas is not reproduced in $C_{70}@SWCNT$. All the relevant modes of C_{70} -peas show the "normal" symmetric charge-transfer bleaching as the RBM/TM lines. Analogously to $C_{60}@SWCNT$, electrochemical charging allows detecting of some lines, which are normally hidden by overlapping D- and G-modes of SWCNT.

Figure 1 Potential dependent Raman spectra of C_{60} @SWCNT (peapods) on Pt electrode (excited at 2.54 eV) in 0.2 M LiClO₄ + acetonitrile. The electrode potential varied by 0.3 V from -1.23 V to 1.77 V vs. Fc/Fc⁺ for curves from top to bottom. Spectra are offset for clarity, but the intensity scale is identical. Arrows indicate the expected Raman lines of C_{60} : H_g(7), A_g(2) and H_g(8). Note that the H_g(8) peak is disclosed via a blue shit of the TM mode, which is due to anodic polarization. The peak at 1374.5 cm⁻¹ belongs to acetonitrile.

Acknowledgement. This work was supported by IFW-Dresden and by Academy of Sciences of the Czech Republic (contract No. A4040306).

References

- (1) Kavan,L.; Dunsch,L.; Kataura,H. *Chem.Phys.Lett.* **2002**, *361*, 79.
- (2) Kavan,L.; Rapta,P.; Dunsch,L.; Bronikowski,M.J.;
 Willis,P.; Smalley,R.E. *J.Phys.Chem.B* 2001, *105*, 10764.
- (3) Kavan,L.; Rapta,P.; Dunsch,L. *Chem.Phys.Lett.* **2000**, *328*, 363.