
MUTUAL STABILISATION OF TRIMETAL NITRIDE CLUSTERS AND I_h -C₈₀ FULLERENE

<u>M. Krause</u>¹, P. Georgi¹, J. Noack¹, L. Dunsch¹, K. Vietze², G. Seifert²

¹Institut für Festkörper- und Werkstoffforschung Dresden, Helmholtzstr. 20, D-01069 Dresden, Germany ²Technische Universität Dresden, Institut für physikalische Chemie, D-01062 Dresden, Germany

Infrared and Raman spectroscopy, supported by quantummechanical calculations, were used to study stability and structure of endohedral trimetal nitride fullerenes. The variation of the carbon cage size and of the encaged metal pointed to a particularly high stability of $M_3N@C_{80}$ structures, which is due to a mutual stabilisation of trimetal nitride cluster and I_h -C₈₀ fullerene. Compared to classical dimetallofullerenes as I_h -La₂@C₈₀ and I_h -Ce₂@C₈₀ the endohedral $M_3N@C_{80}$ structures are further stabilized by the formation of a M_3N -C₈₀ bond and the presence of three strong metal-nitrogen bonds [1].

For $Sc_3N@C_{80}$ the vibrational spectra reveal a Sc_3N cluster structure with a threefold symmetry axis. A reduction of the carbon cage size on the one hand and an increasing size of the trimetal nitride cluster on the other hand induce structural deformations of the cluster. As a consequence, the antisymmetric metal-nitrogen vibration splits into two components for $Sc_3N@C_{78}$, and as shown in Fig. 1, for $M_3N@C_{80}$ fullerenes with larger metal atoms than scandium.

Fig.1: Selected parts of the FTIR spectra of I_h -C₈₀ based endohedral fullerenes at 293 K

 M. Krause, H. Kuzmany, P. Georgi, L. Dunsch, K. Vietze, G. Seifert, J. Chem. Phys. 115, 6596 (2001)