Electrochemical and Chemical Reduction Properties of Thin Films Containing Double–Decker Lutetium(III) Phthalocyanines in Aqueous Media

<u>Takashi Nakanishi</u>,^{a, b, c} Ismail Yilmaz,^{b, d} Karl M. Kadish^b

 ^aDepartment of Chemistry, Dyson Perrins Laboratory, University of Oxford, Oxford, OX1 3QY, U.K. (takashi.nakanishi@chem.ox.ac.uk)
^bDepartment of Chemistry, University of Houston, Houston, TX 77204-5641, U.S.A.

^cDepartment of Materials Science, Graduate School of Science and Technology, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan

^dDepartment of Chemistry, Technical University of Istanbul, Maslak, Istanbul, 80626, Turkey

The solution and film electrochemical behaviour of double-decker lutetium(III) phthalocyanines has been extensively investigated under different conditions because of their electrochromic properties.¹ The purpose of our recent work was to investigate the electrochemistry reducible double-decker of highly lutetium(III) phthalocyanines cationic in а matrix of tetraoctylphosphonium bromide $(4C_8P^+Br^-)$ which was deposited as a cast film on an electrode and immersed in an aqueous KCl solution. The chemical reduction of the double-decker properties lutetium(III) phthalocyanines/ $4C_8P^+Br^-$ cast film on a quartz plate in H₂O containing a reducing agent (Na₂S₂O₄) were also investigated by UV-vis/near-IR absorption spectroscopy. A gel-like membrane of $4C_8P^+Br^-$ lipid analogue is known to provide a suitable microenvironment for examining the electrochemistry of redox active molecules, such as fullerenes, at an electrode surface in aqueous media.² The same methodology is used in the present study for examining the multiple reductions of alkylthio-substituted double-decker lutetium(III) phthalocyanines, $[(RS)_n Pc]_2 Lu$ where n = 4 ($R = C_{12}H_{25}$) (1) or n = 8 ($R = C_6H_{13}$) (2) and Pc = the dianion of phthalocyanine. Both compounds undergo four of the five theoretically predicted reductions in organic media.³

Experimental Section. Typical procedures for preparation of gel–like membranes of $1/4C_8P^+Br^-$ or $2/4C_8P^+Br^-$ (molar ratio, 1/19) on a basal plane pyrolytic graphite (BPG) electrode are as follows: A 28 microliter portion of 1 or $2/4C_8P^+Br^-$ in chloroform ([1 or 2] = 0.27 mM and $[4C_8P^+Br^-] = 5.15$ mM) was placed on a BPG electrode surface (geometric area, 0.36 cm²) and then airdried. The modified electrodes were then immersed in a 0.5 M KCl aqueous solution, and followed by electrochemical measurements made N_2 under atmosphere at 25 °C.

The gel–like membranes of $1/4C_8P^+Br^-$ or $2/4C_8P^+Br^$ were prepared on a quartz plate in a similar manner for UV–vis/near–IR absorption spectroscopy. The modified substrates were immersed in H_2O under Ar atmosphere at 25 °C, then $Na_2S_2O_4$ was added as a reducing agent.

Results and Discussion. We have recently reported that $[(C_{12}H_{25}S)_4Pc]_2Lu$ undergoes a single oxidation and up to four reductions when dissolved in dichloromethane, while five reductions and one oxidation are observed in aqueous 0.5 M KCl solutions of a cast film of $[(C_{12}H_{25}S)_4Pc]_2Lu/4C_8P^+Br^-$ on a BPG electrode.⁴ The fifth reduction was observed for the first time at the $4C_8P^+Br^-$ modified electrode and had not previously been detected for any other double–decker lutetium(III) phthalocyanine. Similar electrochemical properties are also observed for $[(C_6H_{13}S)_8Pc]_2Lu/4C_8P^+Br^-$ modified electrodes.

The cationic sites in the matrix stabilize the electroreduced forms of the double–decker lutetium(III) phthalocyanine compounds. Thus, half–wave potentials of $[(RS)_nPc]_2Lu/4C_8P^+Br^-$ at the modified electrode are all more positive by up to 0.51 V than the measured values in dichloromethane. A thermodynamic treatment of the electrochemical data was carried out at different concentrations of supporting electrolyte in order to explain the ion-pairing effects which exist between the cation of the matrix and the reduced forms of $[(RS)_nPc]_2Lu$ on the electrode surface.

Generation of the first reduced forms $\{[(RS)_nPc]_2Lu\}^$ and the second reduced forms $\{[(RS)_nPc]_2Lu\}^{2-}$ in a composite film with $4C_8P^+Br^-$ was observed in H_2O containing $Na_2S_2O_4$ as a reducing agent by UV–vis/near– IR absorption spectroscopy. In contrast, no generation of any reduced forms were observed at either solely cast films of $[(RS)_nPc]_2Lu$ or composite films with an anionic lipid didodecylphosphate $(2C_{12}PO_4H)$. These results suggest that the ion–pairing between the reduced forms of $[(RS)_nPc]_2Lu$ and the matrix cations plays an important role for the generation of reduced species in aqueous media.

References:

- Nicholson, M. M. *in The Phthalocyanines Properties* and Applications; Leznoff, C.C., Lever, A. B. P., Eds.; VCH Publishers: New York, 1993; Vol. 3, pp 76–117.
- Nakanishi, T.; Murakami, H.; Sagara, T.; Nakashima, N. Chem. Lett. 2000, 340–341.
- Orti, E.; Bredas, J. L. J. Chem. Phys. 1990, 92, 1228– 1235.
- Kadish, K. M.; Nakanishi, T.; Gürek, A.; Ahsen, V.; Yilmaz, I. J. Phys. Chem. B 2001, 105, 9817–9821.