Computations on N Encapsulations into Smaller Cages

Zdeněk Slanina¹ and Tahsin J. Chow^2

¹Department of Theoretical Studies Institute for Molecular Science Myodaiji Okazaki, J 444-8585 Japan

²Institute of Chemistry Academia Sinica 128 Yen-Chiu-Yuan Rd., Sec. 2 Nankang, Taipei, ROC 11529 Taiwan - R.O.C.

Endohedral cage compounds have been considered as possible candidate species for molecular memories. In this report, computations are carried out on two hypothetical N-containing endohedral system - N@C₃₆ (D_{6h} & D_{2d} cages). Some additional computations on four hypothetical He-containing endohedral system - He@C₁₄H₁₆ (isogarudane and garudane cages) and He@C₃₆ (D_{6h} & D_{2d} cages) are also included. Geometry optimizations are followed by vibrational analysis in some cases. The geometry optimizations can indeed produce local energy minima for the endohedral systems. While in N@C₃₆ D_{6h} the nitrogen atom has a central location, in N@C₃₆ D_{2d} exhibits a bonding pattern. Thermodynamic and kinetic stability aspects are discussed, too.