$\begin{array}{l} CHARGE \ CARRIER \ MAPS \ FOR \\ (La_{0.9}Sr_{0.1})M^{III}O_{3-\delta} \ (M^{III} = Sc \ and \ In) \\ PEROVSKITES \\ AND \ (Ce_{0.8}Sm_{0.2})O_{2-\delta} \ FLUORITE \end{array}$

Katsuhiro NOMURA, Tomonari TAKEUCHI, Shin-ichi KAMO, Hiroyuki KAGEYAMA, and Yoshinori MIYAZAKI National Institute of Advanced Industrial Science and

Technology (AIST) - Kansai Midorigaoka 1-8-31, Ikeda, Osaka 563-8577, Japan

Total electrical conductivities, σ_{t} , (= oxide ion conductivity (σ_{O2}), proton conductivity (σ_{H+}), hole conductivity (σ_{h+}), plus electronic conductivity (σ_{e-})) were measured for (La_{0.9}Sr_{0.1})M^{III}O_{3-δ} (M^{III} = Sc and In) perovskite-type oxides and (Ce_{0.8}Sm_{0.2})O_{2-δ} fluorite-type one under different temperatures, *T*, oxygen partial pressures, *P*(O₂), and hydrogen partial pressures, *P*(H₂). The conductivity data obtained were analyzed on the basis of a defect equilibrium model, and the results have been depicted uniformly as "charge carrier maps" which show predominant charge carrier (i.e., oxide ion (O²⁻), proton (H⁺), hole (h⁺), and electron (e⁻)) domains as functions of *T*, *P*(O₂), and *P*(H₂) [1].

 $(La_{0.9}Sr_{0.1})ScO_{3-\delta}$ perovskite (LSS) showed the O^{2-} , H⁺, and h⁺ conduction domains (see Fig. 1). The horizontal lines show the $P(O_2)$ values where $\sigma_{h+} = \sigma_{O2-}$. The vertical lines the $P(H_2)$ where $\sigma_{h+} = \sigma_{H+}$. The oblique lines the $P(H_2O)$ where $\sigma_{O2-} = \sigma_{H+}$. The dotted oblique lines the $P(H_2O)$ at 1000°C. Under an anode condition, e.g., at 1000°C, $P(H_2) = 1$ atm, and $P(H_2O) = 0.1$ atm (depicted as a closed circle in Fig. 1), the LSS is expected to work as a predominant proton conductor.

 $(La_{0.9}Sr_{0.1})InO_{3-\delta}$ perovskite (LSI) showed the O²⁻, H⁺, and h⁺ conduction domains (see Fig. 2). The lines drawn in Fig.2 have the same meaning as those in Fig. 1. The LSI decomposed at $P(O_2) < 10^{-15}$ atm and $P(H_2) > 10^{-2}$ atm domain. Under an moderate anode condition, e.g., at 1000°C, $P(H_2) = 10^{-3}$ atm, and $P(H_2O) = 10^{-2}$ atm (a closed circle in Fig. 2), the LSI is expected to be a predominant oxide ion conductor.

 $(Ce_{0.8}Sm_{0.2})O_{2-\delta}$ fluorite (SDC) showed the O²⁻ and e⁻ conduction domains (Fig. 3). The horizontal lines show the $P(O_2)$ values where $\sigma_{O2-} = \sigma_{e-}$. The dotted oblique lines the $P(H_2O)$ at 700°C. Under an anode condition, e.g., at 700°C, $P(H_2) = 10^{-2}$ atm, and $P(H_2O) = 0.042$ atm (a closed circle in Fig. 3), the SDC is expected to work as a mixed ($\sigma_{O2-} \approx \sigma_{e-}$) conductor.

The "charge carrier maps" can be used to predict the electrical conduction properties of the electrolyte materials for solid oxide fuel cells (SOFCs) under different operating conditions.

ACKNOWLEDGMENTS

A part of this study is supported by the Ministry of Economy, Trade, and Industry (METI), Japan.

REFERENCE

 N. Kurita, N. Fukatsu, K. Ito, and T. Ohashi, J. Electrochem. Soc., 142, 1552 (1995).

Fig. 1 Charge carrier map for $(La_{0.9}Sr_{0.1})ScO_{3-\delta}$ perovskite (LSS) between 600 and 1000°C (predominant oxide ion, proton, and hole conduction domains are shown).

Fig. 2 Charge carrier map for $(La_{0.9}Sr_{0.1})InO_{3-\delta}$ perovskite (LSI) between 600 and 1000°C (predominant oxide ion, proton, and hole conduction

domains are shown).

Fig. 3 Charge carrier map for $(Ce_{0.8}Sm_{0.2})O_{2-\delta}$ fluorite (SDC) between 600 and 1000°C (predominant oxide ion and electronic conduction domains are

shown).