ELECTROCHEMICAL IMPEDANCE CHARACTERISTICS OF SOME MEDIUM TEMPERATURE SEMICELLS FOR SOFC

E. Lust, G. Nurk, P. Möller, I. Kivi, S. Kallip, A. Jänes, V. Sammelselg, H. Mändar

University of Tartu, Jakobi 2, 51014 Tartu, Estonia

Solid oxide fuel cells (SOFC-s) are the promising energy production systems for the 21^{st} century because of their high total efficiency, environmental friendliness and utilisation of a variety of the fuel resources (1). Recently, the SOFC with a low-temperature operation (600÷700°C) was focused on by several groups. One probable cathode material for low-temperature SOFC is a perovskite-type complex oxide La_{1-x}Sr_xCoO_{3- δ} (LSCO), having high electronic and oxide ion conductivities in a wide temperature range (1-3).

In the present study, the electrochemical of following semielements behaviour $Ce_{0.83}Gd_{0.17}O_{1.9}$ | $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ (Sys 1): $Ce_{0.8}Sm_{0.2}O_{1.9}\,|$ $La_{0.6}Sr_{0.4}CoO_{3\text{-}\delta}$ (Sys 2) and Ce_{0.83}Gd_{0.17}O_{1.9} | La_{0.6}Sr_{0.4}CoO₃₋₆-Ag (Sys 3) at $773 \le T \le 1173$ K and at fixed cathodic polarisations $\Delta E = 0$; -0.05; -0.1; -0.3; -0.5 and -1.0 V vs. Pt | porous Pt | O₂ reference electrode has been studied. The $La_{0.6}Sr_{0.4}CoO_{3-\delta}$ cathode material and the Ce_{0.8}Sm_{0.2}O_{1.9} (CSO) and (CGO) electrolytes Ce_{0.83}Gd_{0.17}O_{1.9} were prepared by the conventional solid state reaction technique (1-3). A three-electrode assembly was used to study the electrochemical properties of the electrodes.

The complex plane (Z'',Z'-) plots at different T and ΔE (from 0 to -1 V) have been measured in the range of ac frequency 0.01 Hz \leq $f \le 100$ kHz at $773 \le T \le 1173$ K. In the region $0.01 \text{ Hz} \le f \le 10 \text{ kHz}$, at least two arcs, corresponding to two time constants, were observed at $T \le 873$ K and the high-frequency arc (arc 1) is noticeably smaller than the lowfrequency arc (arc 2). The shape of the arc 1 depends only slightly on T and the time constant τ_1 decreases with T and probably describes the ionisation of adsorbed O_{ads} at the cathode surface. τ_1 depends somewhat on the electrolyte composition, thus, on the TPB characteristics. The decrease in the phase angle δ with T at T >823 K indicates that the "true" charge transfer process is the rate-determining step at f > 10 Hz $(\delta \approx 0 \text{ at } T \ge 873 \text{ K})$. With increasing T, the arc 1 disappears.

The shape of the arc 2 depends noticeably on T and ΔE , and becomes more depressed with increasing T, which can be explained by the more resistive behaviour of the cathode | solid electrolyte interface at higher T. The Z'',Z'-plots can be simulated by the equivalent circuit, where R_1 is the highfrequency series resistance of the system; CPE₁, R_2 , CPE₂ and R_3 are the so-called highfrequency and low-frequency constant phase elements and charge transfer resistances, respectively. The fractional exponent $\alpha_1 \approx 1.0$ and very low values of R_2 for arc 1 indicate that the "true" charge transfer process is the ratedetermining step at f > 10 Hz and T < 823 K. $\alpha_2 \le 0.5$ for arc 2 of Sys 1 and Sys 2 indicates that CPE₂ behaves as a Warburg-type diffusion impedance (4). Thus, CPE_2 can be exchanged to the generalised finite Warburg element for a short circuit terminus model. τ_2 for the arc 2 is independent of the electrolyte composition at fixed T and ΔE , and characterises mainly the properties and processes in LSCO. τ_2 noticeably decreases with the increase of T at fixed ΔE , and of negative polarisation at fixed T. Thus, the arc 2 probably characterises the exchange reaction of oxygen from the gas phase into the solid (i.e. electroreduction of O_{ads} to O_{ads}) and the slow diffusion of O_{ads} to TPB in the solid cathode material.

The polarisation resistance values, depending on ΔE , *T* and electrolyte, have been established. The activation energy calculated decreases slightly with the increase of $|-\Delta E|$. The activation energy is higher for Sys 2 than for Sys 1. The charge transfer coefficient of the cathode reaction $\alpha_c \approx 1.0$ has been obtained from the Tafel-like overvoltage η_c ,log*i*-plots at T > 823 K, indicating the mass transfer limited process in the cathode material. The exchange current density, depending on the system studied, increases with *T*.

References

- S. C. Singhal, in *Solid Oxide Fuel Cells, V*, U. Stimming, S.C. Singhal, H. Tagawa, W. Lehnert, Editors, p.37, The Electrochem. Soc., Pennington, NJ, (1997).
- T. Horita, K. Yamaji, N. Sakai, H. Yokokawa, A. Weber, E. Ivers-Tiffee, *Solid State Ionics* 138, 143 (2000).
- 3. S. P. Jiang, Solid State Ionics 146, 1 (2002).
- 4. J.R. MacDonald, Ann. Biomed. Eng. 20, 289 (1992).