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To identify reaction models is very helpful for 
developing Chemical Vapor Deposition (CVD) processes. 
However, the automation of the works for identifying the 
reaction models is obstructed, because there are many 
intellectual procedures in them. Therefore, we proposed 
the novel technique, as we called Evolutionary Analysis 
for Reaction Systems (EARS), for determining 
appropriate reaction models by analyzing experimental 
data automatically using Genetic Algorithms (GA) (1).  

Figure 1 (a) shows the conventional modeling 
method of reaction systems (2). Appropriate reaction 
models are drawn from experimental data by solving the 
reverse problems of reaction processes. Figure 1 (b) 
shows the modeling method that we proposed on the basis 
of the theory of evolution. In the first place, the 
candidates of the appropriate reaction model were set at 
random or a priori. Then, the predicted (simulated) results 
corresponding to the experiment results were calculated 
from the candidates of the reaction models by solving 
forward problems of the reaction processes. Next, the 
amount of the difference between the predicted results 
and the experimental results was estimated. The more 
different is the candidate of the reaction model from the 
appropriate reaction model, the larger is the amount of the 
difference between the predicted and the experimental 
results. At last, the candidates of the reaction models were 
modified on the basis of the theory of evolution, that is, 
by evolutionary computing using the amount of the 
difference as the evolutionary pressure. These procedures 
were repeated until the amount of the difference became 
small enough. We adopted the GA as the method of the 
evolutionary computing, because the GA is robust and 
suitable for global optimizations. 

Figure 2 shows the example of the reaction 
models. The appropriate reaction models were determined 
both quantitatively and qualitatively, based on chemical 
kinetics. The reaction models consist of deposition 
species (including source gases), films, gas-phase 
reactions with the values of the rate constants kg, and 
surface reactions with the values of the rate constants ks. 
Arrows indicate the gas-phase reactions and the surface 
reactions, and the directions of arrows correspond to the 
directions of the reactions. Both the gas-phase reactions 
and the surface reactions imply the first-order reactions of 
the deposition species. The reaction models were 
expressed by the combinations of the states of them, that 
is, on and off for the deposition species, and the surface 
reactions, forward, backward, and off for the gas-phase 
reactions. All patterns of the combinations were 
considered, although the maximum number of the 
deposition species was restricted to four, and the values of 
the rate constants were limited to the range that we 
defined.  

Figure 3 shows the schema of the automatic 
modeling system. The system consists of three devices, 
that is, a user interface, an inference engine, and virtual 
reactors (reaction simulators). The inference engine 
proposes the reaction models, examines the validities of 
them, estimating the difference between the predicted and 
the experimental results, by operating the virtual reactors 
for itself, and corrects the models using GA. In order to 
take the appropriate reaction models, only users have to 
do is to input the information of the experimental data 
with the experimental conditions to the system through 
the user interface. 

We investigated the ability of the system by use 
of the experimental data of tetraethylorthosilicate (TEOS) 
thermal CVD (2). We successfully showed that the 
system enough ability to identify the reaction models 
appropriately from the experimental results of CVD. 
Therefore, the conventional procedures of reaction 
modeling can be replaced with the system, and the system 
will contribute to the automation of R&D works. 
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Figure 1. Comparison of the modeling methods 
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Figure 2. Example of reaction model 
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Figure 3. The schema of automatic modeling system 


