Characterization of vanadium oxide films prepared by atmospheric pressure chemical vapour deposition

Dimitra Vernardou¹, Martyn E. Pemble¹, David Sheel¹, Troy D. Manning² and Ivan P. Parkin²

¹ Institute for Materials Research, University of Salford, Cockroft Building, Salford, M5 4WT, UK

²Department of Chemistry, University College London, 20 Gordon Street, London, WC1H OAJ, UK

ABSTRACT

Atmospheric pressure chemical vapour deposition was used for the deposition of pure and doped vanadium oxide coatings. The deposition was carried out on SiO_2 and SnO2 substrate using VCl₄, H₂O and W(OC₂H₅)₆ at a range of temperatures (400-600°C). The optical constants were characterized by spectrophotometer (Figure 1), the crystal structure of the films by X-ray diffraction (Figure 2) and the stoichiometry of elements in each layer by Rutherford backscattering as well as the electrochemical properties of the films deposited on SnO_2 . Results obtained demonstrate the various properties of pure and doped vanadium oxides at room temperature.

Figure 1 (a) Calculated refractive indices and (b) absorption coefficients versus wavelength for doped vanadium oxides as well as thickness at room temperature

Figure 4 X-ray diffraction analyses of (a) pure and (b) doped vanadium oxides respectively.