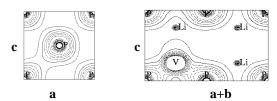

$\begin{array}{l} Amorphization/Recrystallization \ Mechanism \\ in the \ Ternary \ Li_xMPn_4 \ Phases \ (M=Ti,V; \ Pn=P,As): \\ A \ DFT \ Study \end{array}$

M.-L. Doublet^a, F. Lemoigno^a, L.Monconduit^b, F. Favier^b a : CNRS-LSDSMS b: CNRS-LAMMI Université Montpellier II – Place E. Bataillon F-34095 Montpellier, Cedex 5

We present a computational study of the electrochemical reactivity of the ternary transition metal pnictides Li_xMPn_4 (M=Ti, V; Pn = P, As) towards elemental lithium. These phases have been recently proposed as promising negative electrode materials¹ for the design of new Li-Ion batteries. They show high specific capacities (500< C <1000mAhg⁻¹) in their first charge/discharge cycle which are holded on to 80% after 20 cycles. To get more insigths into the Li insertion/deinsertion mechanisms involved in these materials, electronic structure calculations and structural relaxations have been performed, using the density functional theory formalism (codes VASP, WIEN).

1. Crystal Structure and Electrochemical reactivity of the $\mathrm{Li}_x\mathrm{MPn}_4$

As shown in figure 1, the Li_xMPn_4 phases crystallize in a cubic symmetry. The pnictogen atoms form a *f.c.c.* bulk in which the tetrahedral and octahedral Pn-coordinated cationic vacancies are filled by Li/M in a statistical manner, and by Li, respectively.


Fig.1 : 2x2x2 Crystal structure of Li₇MPn₄. The transition metal atoms (red) are statistically distributed over the tetrahedral Pn-coordinated sites of the *f.c.c.* bulk of Pn atoms (blue).

A study of the electrochemical reactivity of these materials towards elemental lithium, through the assembly of Li/Li_xMPn₄ half cells (M=Ti, V, Mn, Pn=P, As)² has revealed that a large number of lithium per formula unit can be reversibly extracted/inserted from/in the Li_xMPn₄ networks (up to 10 lithium for Li_xVAs₄). Galvanostatic measurements show that a two-phase process occurs upon charge (flat potential profiles) whereas a more complex mechanism is involved upon discharge. Recently, *In situ* Xray diffraction patterns collected upon cycling have shown that the *f.c.c.* peaks of the starting lithiated and crystallized phases progressively vanish upon charge (delithiation) while they partially reappear upon discharge (lithiation). This suggest a reversible amorphization/recrystallization process upon cycling.

2. Electronic Structure Calculations

To elucidate the electrochemical reaction mechanism, we performed electronic structure calculations, with full structural relaxations, on the Li_xMPn_4 (M=Ti,V; Pn=P,As) bulk for various lithium compositions. As shown by the electron density maps given in figure 2, the electronic structure of these materials describes weakly interacting MPn₄ tetrahedra. This leads to a wide charge vacancy between the tetrahedra (*i.e.* inside the cubic cell) that favours

the lithium diffusion.

Fig.2: Electron density maps for the Li_7VP_4 phase in the (**a,c**) plane (face of the *f.c.c.* cell) and in the (a+b,c) plane.

Moreover, our calculations show that the stability of the MPn_4 tetrahedra is not that affected by the loss of charge when lithium content goes from 7 to 3.

As depicted in figure 3, the M-Pn bonds are slightly shortened (by no more than 5%) when 4Li^+ are extracted from Li_7MPn_4 . This leads to a small contraction of the tetrahedra within the cell and to a new charge distribution along the M-Pn bonds. As a consequence, the total anionic charge of each MPn₄ tetrahedra (which decreases with the number of lithium) keeps on being efficiently compensated by the remaining Li^+ cations, through electrostatic interactions. In addition, due to $\text{Li}^+\text{-Li}^+$ destabilizing interactions, the unit cell parameter of the initial cubic lattices does not follow the M-Pn bond contraction when lithium is extracted from the Li_7MPn_4 phases. The main consequence of this is a loss of the *f.c.c.* symmetry for the relaxed Li_3MPn_4 unit cells, in full agreement with *in situ* XRD.

Fig. 3 : M-Pn bondlength contraction of the MPn_4 tetrahedra for Li_3MPn_4 .

The high reversible charge/discharge process evidenced for the ternary Li_xMPn_4 phases is then associated with a destruction/recovering of the long-range cubic order. This has been rationalized by means of a contraction/elongation of the strongly bonded MPn₄ tetrahedra. Because the contraction is not larger than 5% the total unit cell volume remains nearly unchanged. This is a crucial point since materials that combine a small volume expansion together with a wide range of lithium are highly requested in the lithium rechargeable battery field.

[1] M.-L. Doublet, F. Lemoigno, F. Gillot and L. Monconduit *Chem. Mat.* <u>14</u> **2002** 4126.

[2] L. Monconduit, F. Gillot, M-L. Doublet, F. Lemoigno *Solid State Ionics* **2002** In press