High energy 4f^N→4f^{N-1}5d¹ transitions of Eu²⁺, Ce³⁺, and Pr³⁺ in BaZnP₂O₇ A. A. Setlur and A. M. Srivastava GE Global Research Niskayuna, NY 12309

We report the spectroscopic properties of a $4f^{N} \rightarrow 4f^{N-1}5d^{1}$ transitions in $BaZnP_2O_7$. This host lattice is chemically similar to the known pyrophosphate BaMgP₂O₇ lamp phosphor. However, while Ba²⁺ ions are nine-coordinated in both host lattices, the Zn compound is triclinic while the Mg compound is monoclinic, and the average Ba-O bond length is larger in the Zn compound compared to the Mg compound (2.85 Å vs. 2.81 Å) [1,2]. The larger bond length is thought to be the cause of the higher energy Eu^{2+} $5d \rightarrow 4f$ emission in BaZnP₂O₇ compared to BaMgP₂O₇ (~385 nm vs. 400 nm) due to smaller crystal field and covalency We will further investigate effects. aspects the luminescence of Eu^{2+} in this such host lattice as quenching mechanisms and the presence of Eu^{2+} f-f transitions in comparison to other Eu²⁺ UV phosphors. Finally, we will also report on the luminescence of Ce³⁺ and ⁺ in this host lattice to further Pr³ understand the relationship between the $4f^{N} \rightarrow 4f^{N-1}5d^{1}$ transitions in these ions especially in comparison to Eu^{2+} .

- E. V. Murashova, Yu. A. Velikodnyi, V. K. Trunov, Russ. J. Inorg. Chem. 36, 479 (1991).
- [2] E. V. Murashova, Yu. A. Velikodnyi, V. K. Trunov, Russ. J. Inorg. Chem. 36, 481 (1991).