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Introduction 
Electrocatalytic hydrogenation (ECH) at Raney 

metal electrodes is a mild method for hydrogenating a 
variety of functional groups in slightly acidic (pH ≥ 3), 
neutral or basic aqueous or hydro-organic media.1 It 
involves the reaction of chemisorbed hydrogen, M(H), 
with an adsorbed organic substrate as in catalytic 
hydrogenation (CH): M(R) + 2M(H) → RH2 + M, where 
R is an unsaturated compound and M represents an 
adsorption site on the electrode surface; or M(RZ) + 
2M(H) �  RH + ZH + M, where RZ represents an organic 
substrate with a weak sigma bond (hydrogenolysis). In 
ECH, M(H) is generated by reduction of water: 
2H2O/H3O

+ + 2e− + M → 2M(H) + 2HO−/H2O. Thus the 
kinetic barrier for the thermal dissociation of dihydrogen, 
which must take place in CH, is bypassed and 
hydrogenations on R-metals can be carried out at 
temperatures below 100ºC and at atmospheric pressure.  

We report on a study of the ECH of substituted 
naphthalenes 1 and 4 at Raney nickel electrodes in 
aqueous media (Schemes 1 and 2, X = CH3, OH, NH2). 
The aim was to determine the selectivity of the 
hydrogenation to substituted tetralins (hydrogenation of 
ring B vs. hydrogenation of ring A: 3/2 or 6/5 ratio = B/A 
ratio) as a function of substituent X and to see if ECH 
could be an efficient method for desulfurization of 2-
thionaphtol (7) (Scheme 3).  
 
Results and Discussion 

The electrolyses were carried out in a two-
compartment jacketed H-cell with a cation-exchange 
Nafion membrane, on 2 mmoles of substrate (16 mM 
solution), at 80ºC, under gavalnostatic conditions (J = 0.8 
or 1.7 mA/cm2), and at Raney nickel electrodes consisting 
of Raney nickel particles imbedded in a Ni matrix.2 Three 
media were used: 1) Neutral [ethylene glycol-water (1.5% 
H2O v/v) containing H3BO3 0.1 M and NaCl 0.1 M, pHi = 
3 and pHf = 6, EWi = −0.64 V and EWf = −1.06 V vs. 
SCE]; 2) Basic [ethylene glycol-water (1.5% H2O v/v) 
containing NaOH 0.14 M and NaCl 0.1 M, pH > 13, EWi 
= −0.98 V and EWf = −1.09 V]; 3) Micellar [catholyte: 
water containing 5% CTAB and NaCl 0.2 M, pHi = 6 and 
pHf = 10, EWi = −0.77 V and EWf = −0.93 V; anolyte: 
H2SO4 0.1 M]. For the ECH of 2-thionaphtol (7), a pulse 
current was also used: J = 0.8 mA/cm2 for 10 ms and J = 0 
for 10 ms].  

In basic medium, the ECH is inefficient for all 
substrates as shown by low current efficiencies and low 
conversion rates. In the case of naphtols 1 and 4 (X = 
OH), which are fully deprotonated at pH > 13, ring B is 
hydrogenated preferentially: B/A ratio of 4 for 1-naphtol 
and of 3 for 2-naphtol (conversion rates of 20-25%). In 
the case of aminonaphthalenes 1 and 4 (X = NH2), ring A 
is hydrogenated faster: B/A ratio of 0 (100% 
regioselectivity) for 1-aminonaphthalene and of 0.3 for 2 
aminonaphthalene (conversion rates of 30-50%). With the 
other substrates, only hydrogen evolution was observed. 

In neutral medium, the ECH is more efficient  
than in basic medium: the current efficiencies (40-80%) 
for and conversion rates (70-90%) are higher (charge of 5 
F/mol). The regioselectivity is the same as in basic 
medium but is generally lower: B/A ratio of 2.5 for 1-
naphtol (1, X = OH), about 1 for 2-naphtol (2, X = OH), 
0.4 for 1-aminonaphthalene (1, X = NH2), and 0.3 for 2-
aminonaphthalene (2, X = NH2). In the case of 
methylnaphthalenes 1 and 4 (X = CH3), the ECH is not 
regioselective (B/A ratio close to 1). The ECH of 2-
thionaphtol (7) gives naphthalene (8) as the main product 
with some tetralin (9) with very low current efficiencies: 
12% after 5 F/mol (22% conversion) and 5% after 42 
F/mol (100% conversion). Interestingly, the amount of 
tetralin formed  remains constant after a charge of 5 
F/mol, which would indicate that the catalyst is 
deactivated towards the hydrogenation of naphthalene but 
retains some activity for the hydrogenolysis of the 
Csp2−SH bond. By using a pulsed current, the efficiency 
is increased and more tetralin is formed: 36% current 
efficiency (50% conversion) after 5 F/mol and 12% 
current efficiency (100% conversion) after 21 F/mol. 

In micellar medium (neutral), the results are 
similar to those obtained in neutral ethylene glycol-water 
in terms of selectivity (B/A ratio), conversion rate, and 
current efficiency for the substituted naphthalenes 1 and 4 
(X = CH3, OH and NH2). The ECH of 2-thionaphtol (7) is 
slightly more efficient and gives more tetralin. No 
electrolysis with a pulse current was carried out in the 
micellar medium. 

In the ECH of 1-naphtol (1, X = OH), 1-
tetralone, tetralin (9), and 2-(1-tetraloxy)ethanol  are 
formed in small amounts besides compounds 5 and 6 
shown in Scheme 1 and, in the ECH of 2-naphtol (2, X = 
OH), tetralin (9) is formed also. The mechanism of 
formation of these secondary products will be discussed. 
 The results will be compared to those of catalytic 
hydrogenation on Raney nickel catalysts. 
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