Selective Electrochemical Fluorination of Organooxygen Compounds in Ionic Liquids

Toshio Fuchigami, Masaru Hasegawa, and Hideki Ishii

Department of Electronic Chemistry, Tokyo Institute of Technology Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

Ionic liquids (ILs) are becoming widely recognized as solvents for green organic synthesis. However, there have been only few papers dealing with electroorganic synthesis in ILs.^{1,2)}

In this work, we studied the electochemical partial fluorination of organooxygen compounds in ILs. Anodic fluorination of cyclic ethers (1,3,5) were successfully carried out under solvent-free conditions using ionic liquids such as Et_4NF nHF(n=4,5) as shown in Table 1.³⁾

() _n			-2e, -H ⁺ , F ⁻ 2 F/mol		~``() _n `O`F	
(X = O, C; n = 0 ,1)						
1,3,5					2,4,6	
Run	Ether		- Product	Yield/% ^a		
	No.	n	<u>X</u>	1100000		
1	1	0	С	2	80	
2	3	1	0	4	77	
3	5	0	0	6	56	

^a Determined by ¹⁹ F-NMR.

Anodic fluorination of lactone 7 and cyclic carbonate 9 was achieved similarly as shown in Scheme 1. This fluorination did not proceed in organic solvents.

phthalide (11) in ordinary organic solvents and ILs such as 1-ethyl-3-methylimidazolium triflate [emim][TfO] (Fig.1). The fluorination did not proceed well in organic solvents, while the fluorination in IL provided fluorinated product 12 in good yield as shown in Table 2.

Fig.1

Table 2. Anodic Fluorination of Phthalide (11)

Ĺ		-2e, -H ⁺ , F [−] [emim][TfO] 8 F/mol	F
	11	12	
Run	Solvent	Supporting Electrolyte	Yield/% ^a
1	MeCN	Et₃N•5HF	16
2	DME	Et ₄ NF•4HF	16
3	[emim][TfO]	Et₃N•5HF	63
4	[emim][TfO]	Et ₄ NF•5HF	65(41) ^b

^a Determined by ¹⁹F-NMR.

^b Isolated Yield

Thus, we have demonstrated successful solvent-free electrochemical synthesis using ionic liquids.

References:

1) Ishii, H.; Fuchigami, T. *Electrochemistry* **2002**, *70*, 46.

2)Sekiguchi,K.; Atobe, M.; Fuchigami, T.

Fuchigami, *Electrochem. Commun.*, in press.
3)Hasegawa, M.; Ishii, H.; Fuchigami, T. *Tetrahedron Lett.* 2002, 43, 1503.

We also attempted anodic fluorination of