Electro-oxidative *N*-Halogenation of 2-Azetidinone Derivatives. Reaction of *N*-Halo-2-azetidinones

Hideo Tanaka,* Shin-ya Arai, Yoshinori Ishitobi, and Sigeru Torii †

Department of Applied Chemistry, Faculty of Engineering, Okayama University, Tsushima-Naka 3-1-1, Okayama 700-8530, JAPAN

(e-Mail: tanaka95@cc.okayama-u.ac.jp)

[†]Institute of Creative Chemistry, Musa 874-5, Okayama 701-2141, JAPAN

Penems and carbapenems have attracted keen interest as promising antibiotics owing to their potent and broad antimicrobial activities as well as excellent metabolic stability.¹⁾ 4-Acetoxy-2-azetidinone **1** and *N*-halo-2-azetidinones **2** have been reported as a key intermediates for synthesis of the important class of β -lactam antibiotics.²⁾ We investigated electrolysis of 2-azetidinone **3** affording **1**, **2a** and **2b** depending on the choice of the electrolysis media and/or procedure (Scheme 1).

At first, electrolysis of 2-azetidinone **3** in AcOH/CH₃CN (1/9) containing $Bu_4NBF_4^{(3)}$ was carried out in a beaker-type undivided cell. After passage of 10 F/mol of electricity (20 mA/cm²), a complex mixture was obtained (Table 1, entry 1). In the presence of NaBr, *N*-bromo-2-azetidinone **2a** was obtained as an only isolable product after passage of 10-20 F/mol of electricity (entries 2-5). With 5 mol equiv. of NaBr 89% yield of **2a** was obtained (entry 5). Notably, when a similar electrolysis was carried out in a divided cell, no appreciable amount of **2a** was obtained, affording 4-acetoxy-2-azetidinone **1** (8%) together with a complex mixture (entry 6).

N-Iodo-2-azetidinone 2b was obtained by electrolysis of 3 in NaI-AcONa-AcOH/CH₃CN (1/9) using a divided cell (Table 2, entries 1-6). With an undivided cell, only 8% yield of 2b was obtained along with recovered 3 (86%, entry 7). The effect of the amount of NaI is significant; thus, the best yield of 2b (79%) was attained by use of 2.5 mol equiv. of NaI (entry 3). The chemical N-iodination of 3 with I_2 and AcONa in AcOH/CH₃CN (1/9) afforded only 16% yield of 2b together with recovered 3 (78%). Reaction of 2b with NaI in AcOH/CH₃CN (1/9) gave almost same mixture (2b/3 = 1/4) suggesting that the equilibrium mixture as shown in Scheme 2 would be formed. It is likely that most of I in the electrolysis media was converted to I₂; consequently the equilibrium (Scheme 2) would shift to the right hand side to afford 2b in good yields.

Electrolysis of **3** in MeOH containing AcONa afforded the ring expansion product **4** in 84% yield which would be formed through the reaction with *in situ* electrogenerated $CH_2=O$ (Scheme 3).

The conversion of N-halo-2-azetidinone **2** to 4-substituted-2-azetidinones **5** (Scheme 4) will be also discussed.

References

- (a) Albers-Schönberg, G. *et al. J. Am. Chem. Soc.* **1978**, 100, 6491. (b) Afonso, A.; Hon, F.; Weinstein J. J. Am. *Chem. Soc.* **1982**, 104, 6138.
- 2) (a) Berks, A. H. *Tetrahedron* 1996, *52*, 331. (b) Byun,
 Y.-S.; Jang, S.-B.; Yoon, G.-J.; Moon, S.-K.; PCT Int. Appl., WO 01072704, Oct. 04 2001.
- Mori, M.; Kagechika, K.; Tohjima, K.; Shibasaki, M. *Tetrahedron Lett.* 1988, 29, 1409.

Table 1. Electro-oxidation of 2-Azetidinone

	MX				
•	AcOH/CH ₃ CN (1/9)			0-	
3	Undivided Cell, (Pt)-(Pt)	1	+	za	

Entry	MX (eq.)		F/mol	Yield (%) ^a		Recov. (%) ^a
Linuy				1	2a	3
1	Bu ₄ NBF ₄ ((0.2)	10	_b	b	_b
2	NaBr	(1)	10	-	26	71
3	NaBr	(1)	20	-	31	64
4	NaBr	(2)	20	-	41	50
5	NaBr	(5)	20	-	89	-
6 ^c	NaBr	(2)	20	8	-	18

^a Isolated yield. ^b A complex mixture. ^c Divided cell.

Table 2. Electro-oxidative *N*-lodination Nal. AcONa

CN (4/0)

	•	0 L		
	20			
Entry	Nal	AcONa	Yield (%) ^a	Recov. (%) ^a
Linuy	(eq.)	(eq.)	2b	3
1	1	1	10	80
2	2	1	76	10
3	2.5	1	79	17
4	3	1	70	22
5	4	1	33	49
6	2	-	47	43
7 ^b	2	1	8	86

^a Isolated Yield. ^b Undivided Cell.

Scheme 3

