Structure and CO Tolerance of a PtMo/C Electrocatalyst

Elisabete I. Santiago, Giuseppe A. Camara, M. Janete Giz, and Edson A. Ticianelli

Instituto de Química de São Carlos - USP C. P. 780, CEP: 13560 - 970, São Carlos (SP), Brazil. E-mail: <u>edsont@iqsc.usp.br</u>

In this work, the performance of PtMo/C electrocatalysts obtained by the formic acid reduction method was evaluated [1]. Studies were conducted on PtMo/C materials submitted to thermal treatment at different temperatures and environments and tested as anode catalysts for proton exchange membrane fuel cells (PEMFC) supplied with hydrogen/CO. The materials were characterized by X-ray absorption spectroscopy (XAS), and the results correlated to the performance in the PEMFC.

PtMo/C electrocatalysts were synthesized by reduction of H_2PtCl_6 – Aldrich and $(NH_4)_6Mo_7O_{24}.4H_2O$ – Mallinckrodt, in the presence of carbon powder (Vulcan XC-72, Cabot), using formic acid [1]. The Pt:Mo compositions were 80:20 and 60:40 with 20 wt.% metal/carbon ratio. The materials were submitted to heat treatment under oxidizing (air, 200 °C, 1h) and reducing (H₂, 500 °C, 1h) atmospheres, and combination of both. The PtMo/C materials were used to prepare the catalyst layer of gas diffusion electrodes for PEMFC, as described previously [2]. The metal loading was 0.4 mg cm⁻² for both, anode (PtMo/C) and cathode (Pt/C - E-tek). Fuel cell polarization measurements were carried out galvanostatically with the single cell (5 cm², geometric active area) at 85 °C, using oxygen saturated with water at 90 °C and 1.7 atm, and either pure hydrogen or mixture of hydrogen with 100 ppm CO (H₂/CO) saturated with water at 100 °C and 2.0 atm. X-ray absorption studies were conducted in situ and the samples consisted of pellets formed with the heat-treated and the un-treated materials, agglutinated using polytetrafluorethylene and containing 10 mg cm^{-2} of metal. Data were collected in the transmission mode at the platinum L_{III} edge, exploring both, the XANES and EXAFS features.

Figure 1 shows single cell polarization curves for pure H_2 and a mixture of H_2 /CO (100ppm) for the asprepared and the heat-treated PtMo/C (60:40) electrocatalysts. For the as prepared and the material treated at 200 °C under air, the electrocatalytic activity for the hydrogen oxidation is high in the presence of CO, with loss of only 100 mV at 1 A cm⁻², as compared to the results for pure H_2 . This behavior may be related to the formation/stabilization of active oxygenated Mo species for CO oxidation by the formic acid. In contrast, the heat treatment at reductive atmosphere leads to a decrease of the electrocatalytic performance, probably due to the destabilization of the active Mo species.

Figure 2 shows XANES spectra and Fourier transform of the EXAFS signals at the Pt L_3 edge, obtained for Pt foil, Pt/C, and PtMo/C electrocatalysts. In Fig. 2a it is observed an increase of the white line magnitude for PtMo/C 60:40 treated under hydrogen. From Figure 2b it is seen that the Pt/C and PtMo/C treated in H₂ present the *fcc* structure of bulk platinum, as indicated by the similarity of the FT features. These

results show evidences of formation of a PtMo real alloy phase, particularly for the material treated at 500 $^{\circ}$ C under hydrogen.

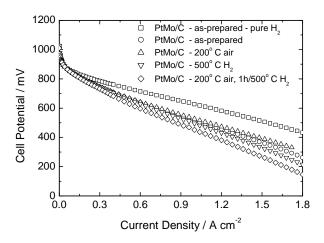


Figure 1 - Polarization curves for PtMo/C (60:40) heat treated at different atmospheres and temperatures.

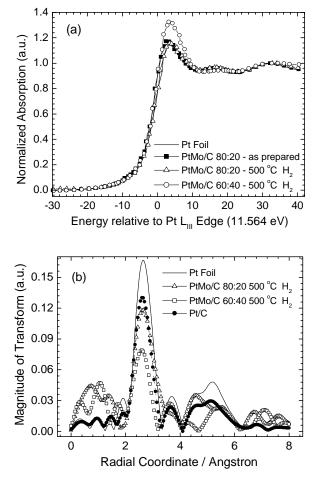


Figure 2 – XANES spectra (a) and Fourier transform of the EXAFS signals (b) at the Pt $L_{\rm III}$ edge of the PtMo/C electrocatalysts at 0.1 V.

ACKNOWLEDGEMENTS

The authors wish to thank FAPESP, CAPES, FINEP, CNPq, and LNLS – National Synchrotron Light Laboratory, Brazil, for financial assistances.

REFERENCES

 E.R. Gonzalez, E.A. Ticianelli, A.L.N. Pinheiro, J. Perez, Brazilian Patent INPI 00321 (1997).
V.A. Paganin, E.A. Ticianelli, E.R. Gonzalez, J. Appl. Electrochem. 26, 297 (1996).