Capacitance probe of the electron displacement in a dye sensitised solar cell by an intermodulation technique : a quantitative model.

¹H. Cachet, ¹M. Keddam, ¹H. Takenouti, ²T. Stergiopoulos and ²P. Falaras

 (¹) UPR 15 CNRS – Physique des Liquides et Electrochimie – Université P. et M. Curie – 4 place Jussieu-F-75252 Paris cedex 05.
 (²) Institute of Physical Chemistry, NCSR
 « Demokritos », 153 10 Ag. Paraskevi, Athens (Greece).

For a dye-sensitised photo electrochemical cell (DSSC) SnO_2 / TiO_2 (nanocrystalline) / redox electrolyte /Pt/ SnO₂, it is well admitted that electrons injected from the excited state of the dye are diffusing through the TiO_2 nanostructure. As a consequence, the potential difference between the TiO₂ surface and the rear electrical contact essentially takes place at the SnO₂/TiO₂ junction. Impedance measurements show that doped SnO₂ is depleted at the SnO₂/TiO₂ interface in the potential range U= 0 (short circuit) to V_{oc} (open circuit). The corresponding space-charge differential capacitance C_d is found to present a Mott-Schottky behaviour, with a potential barrier maximum at U=0 and minimum at $U=V_{oc}$. For usual DSSC, C_d can be measured in the kHz range. Under illumination, electron concentration at the SnO₂/TiO₂ interface is defined by its Quasi-Fermi level (QFL), lined up with the Fermi level of SnO₂. When modulating the applied potential U at a frequency $f_2 \mbox{ much lower than the } C_d \mbox{ sampling}$ frequency f₁, the capacitance C_d is modulated via the changes induced in the QFL by the time-dependent processes implied in the electron displacement in the TiO₂ structure. The so-called *intermodulation technique* consists of applying a composite sinusoidal signal $\Delta U f_1$ + ΔUf_2 to the DSSC, with $f_1 >> f_2$. The quadrature component of the ac total current is detected at the frequency f₁ by a Lock-In amplifier. Under certain conditions, the output signal is proportional to the C_d capacitance with a residual modulation at f_2 . The f_2 component is then determined by a Frequency Response Analyser, typically in the range $f_1/10 > f_2 > f_1/10^5$ [1,2].

Dealing with capacitance, the charge-potential Q(U) characteristic is relevant to define the state of the electrochemical system. At any potential U, the ratio Q/U is defined as the integral capacitance C_{int} . The time-dependence of the displacement current I_d is I_d =dQ/dt. When superimposing a sinusoidal signal at ω_1 = $2\pi f_1$ to the *dc* potential U_o, the component of the current I_d at f_1 is :

$$I_{f1} = [U_o(dC_{int}/dU) + C_{int}(U_o)].j\omega_1.\Delta Uf_1$$

where the term in brackets is the differential capacitance C_d . In the case of a composite signal $\Delta U f_1 + \Delta U f_2$, it was demonstrated [2] that :

 $I_{f1f2} = [U_o(d^2C_{int}/d^2U) + 2(dC_{int}/dU_o)].j\omega_1.\Delta Uf_1.\Delta Uf_2$

where I_{f1f2} represents the modulation at the frequency f_2 of the displacement current measured at f_1 . The response of C_{int} to a potential perturbation is expressed as the sum of two terms, the first one is time-

independent, only potential dependent, the second one is time-dependent. The transfer function experienced by the inter modulation technique is written as :

 $\Delta C_{f1}(f_2)/\Delta U(f_2){=}\{\Delta C_{f1}/\Delta U\}_U{+}~\{\Delta C_{f1}(f_2)/\Delta U\}_t$ with

 $\{\Delta C_{fl}/\Delta U\}_{U} = [U_{o}(d^{2}C_{int}/d^{2}U) + 2(dC_{int}/dU_{o})]$

For DSSC, a quantitative expression for C_{int} is obtained when considering the space-charge formed at the SnO_2/TiO_2 interface. It allows the frequency independent term to be calculated. It is expressed as :

 $\{\Delta C_{\rm fl}/\Delta U\}_{\rm U} = -(q\epsilon\epsilon_{\rm o}N/8)^{0.5}.(U-U_{\rm fb})^{-1.5}$

where q is the elementary charge, $\epsilon\epsilon_o$ and N are the dielectric permittivity and carrier density of SnO₂. Ufb is the flatband potential with respect to the SnO₂/TiO₂ interface. The frequency dependent term { $\Delta C_{f1}(f_2)/\Delta U$ }_t is calculated using expressions developed for IMPS [3]. It is formally expressed as

 $\{\Delta C_{f1}(f_2)/\Delta U\}_t = A.th\sqrt{z} \ /(\ \sqrt{z} + B.th\sqrt{z} \)$

where the complex argument z depends on the processes taken into account (diffusion, recombinations, trapping). Capacitance being proportional to the surface area, this new transfer function allows to determine the actual TiO₂ surface coverage of the SnO₂ substrate. If normalized with respect to the geometric surface area, the measured (real or complex) quantity is expressed in nF V⁻¹ cm⁻² units.

As a first example, in the dark, in the absence of any current, the response is a real constant. As a second example, an experimental Nyquist diagram recorded under illumination is given in the figure with comparison to the simulated curve according to the above model. The well separated low frequency loop is attributed to electron trapping-detrapping effects. The high frequency loop is related to diffusionrecombination processes.

Fig.1: Comparison between experimental and simulated Nyquist diagrams for a DSSC cell using a solid PEObased electrolyte (Diffusion coefficient = 3.10^{-4} cm².s⁻¹; N = 2.10^{20} cm⁻³; trapping rate constant= 50 s⁻¹; surface area = 0.3 cm²).

<u>References</u> [1] R. Antaño-López, M. Keddam and H. Takenouti, *Electrochim. Acta*, 46 (2001) 3611.

[2] R. Antaño-López, *Thesis*, University Paris 6 (2001).
[3] L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, *J. Phys. Chem.B*, **101** (1997) 10281.