## Influence of Structural Features of Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>-SnO<sub>2</sub> Thin Films on their Gas-Sensitive Behaviour

M. Ivanovskaya<sup>1</sup>, D. Kotsikau<sup>1</sup>, G. Faglia<sup>2</sup>, M. Falasconi<sup>2</sup>

 <sup>1</sup>Scientific Research Institute for Physical and Chemical Problems of Belarus State University, Leningradskaya St. 14, 220050 Minsk, Belarus
<sup>2</sup>INFM-Gas Sensors Laboratory, University of Brescia, Via Valotti 9, 25133 Brescia, Italy

As it was found, chemical and phase compositions as well as dispersion and morphology of  $Fe_2O_3$ - $In_2O_3$  and  $Fe_2O_3$ - $SnO_2$  composites has a clear influence on their gas-sensitive properties. The required peculiar properties was imparted to the systems by varying of synthesis conditions, component ratio and mode of the obtained film thermal treatment. Structural features of the samples were studied by XRD, TEM, ESR and Mössbauer spectroscopy. Gas-sensitive parameters of the corresponding thin film sensors were estimated with regards to CH<sub>4</sub>, CO, NH<sub>3</sub>, O<sub>3</sub>, NO<sub>2</sub>, C<sub>2</sub>H<sub>5</sub>OH and CH<sub>3</sub>OH.

Table 1 represents phase composition and average grain size of the most promising nanocomposites.

The sensitive elements were formed from the stabilised sols of the corresponding metal hydroxides which were prepared by sol-gel technique. The composites based on  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> were prepared by two procedures. The concept of the first approach is using of Fe<sup>3+</sup> salts. The second method of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phase preparation assumes using of Fe<sup>2+</sup> and In<sup>3+</sup> salts, which being co-precipitated, give non-stable  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> phase. This phase transforms completely into fairly well crystallized  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> under heating at 300°C.

It was found that all  $Fe_2O_3$ - $In_2O_3$  sensors are characterized by negligible sensitivity to  $CH_4$ , CO,  $NH_3$ , but demonstrate good response when detection of  $O_3$  and  $NO_2$  is mentioned. Both sensitivity and optimal operating temperature appeared to be considerably distinct for the thin film sensors of different composition (Table 2). The mentioned distinctions will probably make possible the selective detection of certain gases in gas mixture using  $Fe_2O_3$ - $In_2O_3$  sensors. Doping of  $SnO_2$  with  $Fe_2O_3$  leads to increasing of  $SnO_2$  sensor response to alcohols. In contrast,  $Fe_2O_3$ - $SnO_2$  sensors are less sensitive to  $NO_2$ and CO than simple  $SnO_2$ .

It is important to note that  $Fe_2O_3$ -In<sub>2</sub>O<sub>3</sub> thin film sensors are more sensitive than already known oxide composites based on SnO<sub>2</sub>, NiO and MoO<sub>3</sub>. Fig. 1 shows the comparison of thin film sensor of various composition response values versus operating temperature. With regards to O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub> nanocomposite consisting of  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> phase is the most sensitive material.

Maximum response values to NO<sub>2</sub> demonstrate the composites which are characterized by irregularity of Fe(III) environment and the presence of highly dispersive  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> phase with anisotropic shape of grains. Mössbauer spectroscopy data allows us to distinguish three types of Fe(III) ions which differ by coordination environment.

For efficient course of alcohols detection, heterojunction films with great phase interface  $(Fe_2O_3/In_2O_3, Fe_2O_3/SnO_2)$  are required.

ESR data give evidence that gas molecule adsorption is going effectively at Fe(III) ions in the environment which differs from cubic one.

| Nanocomposite                                                                         | Phase<br>Composition                                                         | Grain<br>Size,<br>nm |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|
| γ-Fe <sub>2</sub> O <sub>3</sub> -In <sub>2</sub> O <sub>3</sub> (9:1)                | $\gamma$ -Fe <sub>2</sub> O <sub>3</sub><br>C-In <sub>2</sub> O <sub>3</sub> | 25<br>25             |
| <b>α-Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub> (9:1)</b><br>via Fe(II)  | α-Fe <sub>2</sub> O <sub>3</sub>                                             | 8×15                 |
| γ-Fe <sub>2</sub> O <sub>3</sub> -In <sub>2</sub> O <sub>3</sub> (1:1)                | $\begin{array}{c} C-In_2O_3\\ \gamma-Fe_2O_3 \end{array}$                    | 7-8<br>5             |
| <b>α-Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub> (1:1)</b><br>via Fe(III) | Amorphous Fe <sub>2</sub> O <sub>3</sub><br>C-In <sub>2</sub> O <sub>3</sub> | -<br>8               |
| <b>α-Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub> (9:1)</b><br>via Fe(III) | Amorphous Fe <sub>2</sub> O <sub>3</sub>                                     |                      |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> -SnO <sub>2</sub> (1:1)<br>via Fe(III)       | $SnO_2$<br>$\alpha$ -Fe <sub>2</sub> O <sub>3</sub>                          | 4                    |
| γ-Fe <sub>2</sub> O <sub>3</sub> -SnO <sub>2</sub> (1:1)                              | $SnO_2$<br>$\gamma$ -Fe <sub>2</sub> O <sub>3</sub>                          | 2<br>7-10            |

Table 1. Structural features of  $Fe_2O_3$ - $In_2O_3$  and  $Fe_2O_3$ - $SnO_2$  composites annealed at 300°C.

| Sensor                                                                                                                  | Τ, ℃   | Detected<br>Gas                  | Gas<br>conc.,<br>ppm |
|-------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------|----------------------|
| γ-Fe <sub>2</sub> O <sub>3</sub> -In <sub>2</sub> O <sub>3</sub> (9:1)/<br>In <sub>2</sub> O <sub>3</sub>               | 135    | O <sub>3</sub>                   | 0.060                |
| <b>α-Fe<sub>2</sub>O<sub>3</sub>-In<sub>2</sub>O<sub>3</sub>(9:1)/</b><br><b>In<sub>2</sub>O<sub>3</sub></b> via Fe(II) | 70-100 | NO <sub>2</sub>                  | 0.5                  |
| γ-Fe <sub>2</sub> O <sub>3</sub> -In <sub>2</sub> O <sub>3</sub> (1:1)/                                                 | 70-100 | NO <sub>2</sub>                  | 0.5                  |
| In <sub>2</sub> O <sub>3</sub>                                                                                          | 300    | $C_2H_5OH$                       | 50                   |
| $\alpha$ -Fe <sub>2</sub> O <sub>3</sub> -SnO <sub>2</sub> (1:1)<br>via Fe(III)                                         | 300    | C <sub>2</sub> H <sub>5</sub> OH | 50                   |

Table 2. The most promising thin film sensors based on  $Fe_2O_3$ -In<sub>2</sub>O<sub>3</sub> and  $Fe_2O_3$ -SnO<sub>2</sub> composites.



Fig. 1. Comparison of sensitivity of In<sub>2</sub>O<sub>3</sub> based sensors doping with different metal oxides to 1 ppm NO<sub>2</sub>.

This work was performed in the frame of EC Programs: "INCO-COPERNICUS-II" (GASMOH Project) ( $Fe_2O_3$ -  $In_2O_3$  system) and "INTAS" (Project # 2000-0066) ( $Fe_2O_3$ -SnO<sub>2</sub> system).