STRUCTURE AND MASS SPECTROMETRY STUFY

OF NANOMETER

$S_{n^{\text{-}}} \, \alpha \, \mbox{-} F_{e2} O_3$ CARBON MONOXIDE

SENSOR MATERIALS

Qin Huibin Chen Guanqun*

Hangzhou Institute of Electronic Engineering, Hangzhou 310007, China.

*Sichuan pedagogic university, Chengdu610066, China

Receive 10 July 2002; received in revised from 15 September

Abstract

The Sn- α -Fe₂O₃ is one kinds of gas sensor materials, which is evolved from α -Fe₂O₃. In this paper, Sn- α -Fe₂O₃ was fabricated by liquid phase coprecipitation, and the carrier concentration was adjusted by the n-type Sn dopant. The particle morphology was examined by TEM, the lattice parameter was determined by XRD, and the surface area to mass ratio S₀ was determined by BET. The mass spectrum was used to determinate absorption properties and the absorption mechanism. It was found that the Sn- α -Fe₂O₃ particle was taken the shape of needle, and the long axis was about 120 nm and the short axis was 30nm. The resistivity could be improved by Sn dopant. The S₀ was proportional to the Sn dopant content of the Sn- α -Fe₂O₃. Mass spectrometry results showed that the change of the resistivity was due to the change of the carrier concentration.

Keywords Nanometer materials; α -Fe_2O_3; Sn $-\alpha$ -Fe_2O_3; CO; Gas sensor