Effect of the Volume Phase Transition on Diffusion and Concentration of Molecular Species in Temperature-Responsive Gels: Electroanalytical Studies

Weimin Zhang, Irina Gaberman, and Malgorzata Ciszkowska Department of Chemistry, Brooklyn College, CUNY 2900 Bedford Ave., Brooklyn, NY 11210-2889

Effect of the volume phase transition on the diffusion and concentration of molecular probes was studied in temperature-responsive polymeric hydrogels. Results were compared for two gels, poly(Nisopropylacrylamide), NIPA, and poly(Nisopropylacrylamide-co-acrylic acid), NIPA-AA. These gels undergo discontinuous, reversible volume phase transition as a response to temperature changes; this transition results in release of approximately 40% and 90% of the solution/solvent from NIPA-AA and NIPA gel phases, respectively. 1,1'-ferrocenedimethanol, Fc(MeOH)₂, served as an electroactive and spectroscopic probe. Diffusion of Fc(MeOH)₂ was investigated using voltammetry and chronoamperometry with platinum disk electrodes, while UV-vis supported electroanalytical techniques to determine the concentration of that probe in the gel. The diffusion coefficient of $Fc(MeOH)_2$ was inversely proportional to the concentration of the polymer in both NIPA and NIPA-AA swollen gels for temperatures below the volume phase transition (swollen gels), and differed from that in an aqueous solution (see Figure 1 and Table 1). The diffusion coefficient was 16 and 46% smaller than that in an aqueous solution for 3% NIPA and NIPA-AA gels at 25 °C, respectively. Identical activation energy, $E_{\rm a}$, of diffusion in both gels and aqueous solution suggests that the microscopic viscosity in a gel is similar to that of an aqueous solution, even if the macroscopic viscosity is very large.

<u>Table 1.</u> Diffusion coefficient, *D*, and activation energy of diffusion, E_a , of Fc(MeOH)₂ in various media, and macroscopic viscosity, η , of those media; 0.1 M LiClO₄.

Medium	<i>D</i> / cm ² /s @ 25 °C	E _a / kJ/mol	η / cP
Aqueous solution	$6.4 \times 10^{-6} \pm 3.9 \times 10^{-7}$	18.9± 0.23	9.4×10 ⁻¹
2.4 %NIPA gel	$5.5 \times 10^{-6} \pm 1.7 \times 10^{-7}$	18.6± 0.29	1.5×10 ⁵
2.0 % NIPA- AA gel	$\begin{array}{c} 4.4 \times 10^{-6} \pm \\ 5.6 \times 10^{-8} \end{array}$	19.2± 0.18	2.0×10 ⁵

As a result of the volume phase transition, after the gel collapses, no significant changes in the diffusion coefficient values were observed for NIPA-AA gels. However, for NIPA gels, the diffusion coefficient of a probe decreases approximately two orders of magnitude (see Figure 2). This striking difference can be attributed to a different swelling ratio of both polymeric gels in their collapsed state. For NIPA gels that release approximately 90% of a solvent as a result of the volume phase transition, liquid channels in a collapsed phase are considerably restricted for molecular/solvent transport. Relatively open structure exists in collapsed NIPA-AA gels, and therefore, transport of species is not influenced significantly by the volume phase transition. The volume phase transition also resulted in a change of the concentration of a probe in the collapsed gel phase (see Table 2). The concentration of $Fc(MeOH)_2$ in collapsed NIPA gel was as much as 4.5 times higher than that in the original swollen gel, while for NIPA-AA gel that increase in concentration was only 20%.

Medium	<i>D</i> / cm ² /s @ 25 °C	E _a / kJ/mol	η / cP
Aqueous solution	$6.4 \times 10^{-6} \pm 3.9 \times 10^{-7}$	18.9± 0.23	9.4×10 ⁻¹
2.4 %NIPA gel	$5.5 \times 10^{-6} \pm 1.7 \times 10^{-7}$	18.6± 0.29	1.5×10 ⁵
2.0 % NIPA- AA gel	$ \begin{array}{r} 4.4 \times 10^{-6} \pm \\ 5.6 \times 10^{-8} \end{array} $	19.2± 0.18	2.0×10 ⁵

Table 2.	Concentration	of Fc(MeOH) ₂ in 3	% swollen
gels, colla	apsed gels and	expelled solutions.	

<u>Figure 1.</u> Dependence of the normalized diffusion coefficient, D'/D^0 , of Fc(MeOH)₂ on the concentration of the polymer in a swollen gel; 25 °C, 0.1 M LiClO₄.

<u>Figure 2.</u> Diffusion coefficient of 1,1'-ferrocenedimethanol, Fc(MeOH)₂, as a function of temperature; 0.1 M LiClO₄ in all samples.