Abs. 33, 206th Meeting, © 2004 The Electrochemical Society, Inc.

Mechanisms of Photocatalytic Remote Oxidation and Application to Photocatalytic Lithography <u>Wakana Kubo</u> and Tetsu Tatsuma Institute of Industrial Science, University of Tokyo, Komoba, Meguro-ku, Tokyo 153-8505, Japan

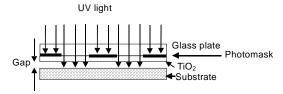
Introduction

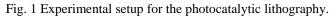
The photocatalytic remote oxidation of organic and inorganic compounds via the gas phase was studied in detail. In the remote oxidation, active oxygen species (AOS) diffuse from TiO_2 via the gas phase and oxidize various organic and inorganic compounds.¹ We have also applied the remote oxidation to photocatalytic lithography.^{2,3}

In our previous work, we found that a strong oxidizing species like OH and a double excitation mechanism are involved in the remote oxidation.³ On the basis of these results, we proposed possible mechanisms of the remote oxidation in which photocatalytically generated H_2O_2 diffuses via the gas phase and is photo-decomposed into OH. In present work, we examined whether H_2O_2 is involved in the remote oxidation. Also, the patterning technique based on the photocatalytic lithography was further developed.

Experimental

A glass plate treated with octadecyltriethoxysilane (ODS) or heptadecafluorodecyltriethoxysilane (HDFS) was used as a probe for the remote oxidation. The plate was faced to a TiO₂ coating with a small intervening gap (12.5 μ m). The TiO₂ coating was irradiated with UV light from its back. The area exposed to UV light was degraded and become hydrophilic. TiO₂-coated photomasks were used for the patterning based on photocatalytic lithography (Fig. 1).


For the detection of H_2O_2 released from TiO₂, a flow-through cell as shown in Fig.2 was prepared.


Results and Discussion

First, we have tried to detect H_2O_2 released from TiO₂ to air by using the TiO₂ cell (Fig.2). After UV irradiation for 1 h, (6.3 ± 1.2) x 10⁻¹⁰ mol of H_2O_2 was detected, while no H_2O_2 was detected in the absence of TiO₂.⁴ These results are in line with the mechanisms we proposed.

Next, we comprised the remote oxidation with the gaseous H_2O_2 -UV reaction. If the photodecomposition of gaseous H_2O_2 into OH is involved in the remote oxidation, those two reactions should exhibit similar behavior. Actually, both of the remote oxidation and the gaseous H_2O_2 -UV reaction converted the surfaces of the ODS-coated and HDFS-coated glass plates, which were initially hydrophobic, to hydrophilic. Namely, ODS and HDFS are decomposed by the H_2O_2 -UV reaction as well as the remote oxidation. Although all these results are in consistent with the proposed mechanisms, we cannot yet conclude that the remote oxidation involves H_2O_2 . To provide clearer evidences, we will examine action spectra of the reactions.

Next we applied the remote oxidation to surface modification and patterning. We have prepared a microstructured silica surface, and modified it with ODS to obtain a super-hydrophobic surface with water contact angle of 151° . This surface was converted to super-hydrophilic (water contact angle $< 5^{\circ}$) by the remote oxidation. Also, the super-hydrophobic surface could be patterned by means of photocatalytic lighography (Fig. 3).⁵

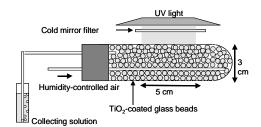


Fig. 2 Experimental setup for the detection of H_2O_2 .

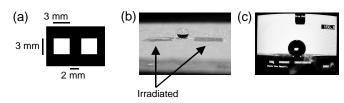


Fig. 3 Diagram of (a) the TiO₂-coated photomask used and (b, c) photographs of the ODS-modified SiO₂ microparticle film surface patterned by photocatalytic lithography with the photomask (5 min irradiation) and water dropped on the irradiated and non-irradiated regions.

- 1. T. Tatsuma, S. Tachibana, and A. Fujishima, *J. Phys. Chem. B*, **105**, 6987 (2001).
- T. Tatsuma, W. Kubo, A. Fujishima, *Lungmuir*, 18, 9632-9634 (2002).
- 3. W. Kubo, T. Tatsuma, A. Fujishima, and H. Kobayashi, J. *Phys. Chem. B*, **108**, 3005 (2004).
- 4. W. Kubo and T. Tatsuma, Anal. Sci., 20, 519 (2004).
- 5. W. Kubo and T. Tatsuma, submitted.