$\label{eq:constraint} \begin{array}{l} Preparation of Micro-Dot Electrodes of LiCoO_2 \ and \\ Li_4Ti_5O_{12} \ for Micro Rechargeable Lithium Batteries \end{array}$

Jun-ichi Sugaya^{1,2}, Hirokazu Munakata^{1,2}, Kaoru Dokko^{1,2}, Jun-ichi Hamagami^{1,2},Takashi Takei^{1,2}, and Kiyoshi Kanamura^{1,2} ¹Department of Applied Chemistry Graduate School of Engineering

Tokyo Metropolitan University

1-1 Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan ²CREST of Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan

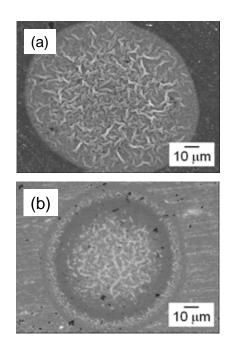
Introduction

Recently, many researchers have studied micro rechargeable lithium batteries. If an all solid-state microbattery is realized, it will be utilized in various application fields related to microsystems, such as microsensors, micromechanics, microelectronics, and so on. Fabrication techniques of all solid-state lithium batteries have been explored intensively in our group. Ink jet technique can be applied to a production of micro rechargeable batteries by using precursor solutions of battery active materials as ink for ink jet printers. In this study, micro-dot electrodes for micro rechargeable batteries were prepared by using micro injection device.

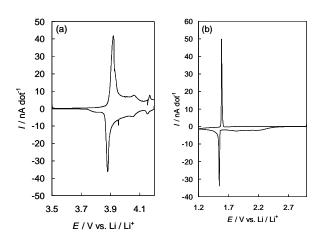
Experimental

A molar ratio of each component in the Li-Co-O sol was CH₃COOLi: Co(CH₃COO)₂: poly(vinylpyrrolidone) (PVP, VP monomer unit, M_w: 55000): CH₃COOH: H₂O= 1.1: 1: 0.5: 1: 50. Composition of Li-Ti-O sol was $Li(OC_3H_7^i)$: [(CH₃)₂CHO]₄Ti: PVP: CH₃COOH: *i*-C₃H₇OH= 4.5: 5: 2: 60: 100. To increase the viscosity of Li-Ti-O sol, 10 mass of Glycerin % the (HOCH₂CH(OH)CH₂OH) was added. By using the micro-injection device, micro-dots were drawn with sol solutions on Au substrates under an optical microscope observation. The dot population on the substrate is 2400 dots per cm². The sol converted into gel in air at room temperature. Then, it was calcinated at high temperatures. The calcination of $LiCoO_2$ and $Li_4Ti_5O_{12}$ were carried out in air at 800 °C for 10 to 60 min, and 700 to 900 °C for 20 Their surface morphologies were min, respectively. observed with scanning electron microscope (SEM), and crystallographic structures were characterized by X-ray diffraction (XRD) and micro-Raman spectroscopy. The voltammetry (CV) was applied to examine the cvclic electrochemical activity of the samples.

Results and Discussion


Figure 1 shows the SEM images of the LiCoO₂ and Li₄Ti₅O₁₂ micro-dot electrodes. The size of a dot is 100-150 μ m in diameter for both samples. Any cracks were not observed on the entire surface of them, however, their surface morphologies were rough. In the XRD patterns of the LiCoO₂ sample prepared by heat treatment at 800 °C for various duration, a main peak corresponding to the (003) plane was observed for all samples. The micro-Raman spectroscopy revealed that LiCoO₂ samples were the hexagonal phase (R³m symmetry) with two Raman active modes at 592, 482 cm⁻¹ arising from E_g and A_{1g}, respectively. The additional Raman peaks (686, 518 cm⁻¹) of impurity phase were observed.

XRD measurements of the prepared $Li_4Ti_5O_{12}$ revealed that existence of very small amount of TiO_2 (anatase and rutile) as impurity phases.


Figure 2 shows the cyclic voltammograms of the prepared LiCoO_2 and $\text{Li}_4\text{Ti}_5\text{O}_{12}$ micro dot electrodes. As shown in Fig. 2(a), three reversible peaks of LiCoO_2 were observed, $\text{Li}_4\text{Ti}_5\text{O}_{12}$ sample also showed reversible redox behavior at 1.5 V (Fig. 2(b)). The prepared LiCoO_2 and $\text{Li}_4\text{Ti}_5\text{O}_{12}$ micro-dot electrodes showed intrinsic electrochemical properties of the materials. The results of charge-discharge measurement of micro-dot electrodes combined with gel electrolytes will be also reported.

Acknowledgment

This work was partially supported by a Grant-in-Aid for Scientific Research (A) (grant no. 14205097) from Japan Society for the Promotion of Science (JSPS).

Figure 1. SEM images of (a) $LiCoO_2$ and (b) $Li_4Ti_5O_{12}$ dot electrodes prepared at 800 °C for 20 min.

Figure 2. CVs of (a) LiCoO_2 and (b) $\text{Li}_4\text{Ti}_5\text{O}_{12}$ dot electrode prepared at 800 °C for 20 min in electrolyte (1.0 mol dm⁻³ LiClO₄ (EC+DEC / 1:1(volume ratio))).